Loading…
Gibbs point process models with mixed effects
We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we disc...
Saved in:
Published in: | Environmetrics (London, Ont.) Ont.), 2010-05, Vol.21 (3-4), p.341-353 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103 |
---|---|
cites | cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103 |
container_end_page | 353 |
container_issue | 3-4 |
container_start_page | 341 |
container_title | Environmetrics (London, Ont.) |
container_volume | 21 |
creator | Illian, Janine B. Hendrichsen, Ditte K. |
description | We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993).
The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/env.1008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753652628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753652628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUQpSPyEbLAY7KR-jai0AakqCy-xWI59LQxJU-L09e9JVITEwHTP8Onq6CB0TskVJSS9hsW6D_IADShRChPFXg-7TCXBI0LUMTqJ8YN0iTMxQDgPRRGTZR0WbbJsagsxJlXtoIzJJrTvSRW24BLwHmwbT9GRN2WEs587RE_TyeP4Ds8e8vvxzQzbLGMSF8ry1DErmCNKSp8aEJ67gkonhTHMKu-kkt502qW08MBHFKBrZMQIKMmG6GL_t2v0tYLY6ipEC2VpFlCvohYs4yzlqezk5V7apo6xAa-XTahMs9OU6H4Q3Q3Sh57iPd2EEnb_Oj2ZP__1Ibaw_fWm-dRcZILpl3mueSbS6dvtTOfZNzVocBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753652628</pqid></control><display><type>article</type><title>Gibbs point process models with mixed effects</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Illian, Janine B. ; Hendrichsen, Ditte K.</creator><creatorcontrib>Illian, Janine B. ; Hendrichsen, Ditte K.</creatorcontrib><description>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993).
The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.1008</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Berman-Turner device ; glmm ; mixed effects ; replicated spatial patterns ; spatial point process models</subject><ispartof>Environmetrics (London, Ont.), 2010-05, Vol.21 (3-4), p.341-353</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</citedby><cites>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Illian, Janine B.</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K.</creatorcontrib><title>Gibbs point process models with mixed effects</title><title>Environmetrics (London, Ont.)</title><addtitle>Environmetrics</addtitle><description>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993).
The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Berman-Turner device</subject><subject>glmm</subject><subject>mixed effects</subject><subject>replicated spatial patterns</subject><subject>spatial point process models</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUQpSPyEbLAY7KR-jai0AakqCy-xWI59LQxJU-L09e9JVITEwHTP8Onq6CB0TskVJSS9hsW6D_IADShRChPFXg-7TCXBI0LUMTqJ8YN0iTMxQDgPRRGTZR0WbbJsagsxJlXtoIzJJrTvSRW24BLwHmwbT9GRN2WEs587RE_TyeP4Ds8e8vvxzQzbLGMSF8ry1DErmCNKSp8aEJ67gkonhTHMKu-kkt502qW08MBHFKBrZMQIKMmG6GL_t2v0tYLY6ipEC2VpFlCvohYs4yzlqezk5V7apo6xAa-XTahMs9OU6H4Q3Q3Sh57iPd2EEnb_Oj2ZP__1Ibaw_fWm-dRcZILpl3mueSbS6dvtTOfZNzVocBU</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Illian, Janine B.</creator><creator>Hendrichsen, Ditte K.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201005</creationdate><title>Gibbs point process models with mixed effects</title><author>Illian, Janine B. ; Hendrichsen, Ditte K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Berman-Turner device</topic><topic>glmm</topic><topic>mixed effects</topic><topic>replicated spatial patterns</topic><topic>spatial point process models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illian, Janine B.</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illian, Janine B.</au><au>Hendrichsen, Ditte K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gibbs point process models with mixed effects</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><addtitle>Environmetrics</addtitle><date>2010-05</date><risdate>2010</risdate><volume>21</volume><issue>3-4</issue><spage>341</spage><epage>353</epage><pages>341-353</pages><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993).
The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/env.1008</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1180-4009 |
ispartof | Environmetrics (London, Ont.), 2010-05, Vol.21 (3-4), p.341-353 |
issn | 1180-4009 1099-095X |
language | eng |
recordid | cdi_proquest_miscellaneous_753652628 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Berman-Turner device glmm mixed effects replicated spatial patterns spatial point process models |
title | Gibbs point process models with mixed effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gibbs%20point%20process%20models%20with%20mixed%20effects&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Illian,%20Janine%20B.&rft.date=2010-05&rft.volume=21&rft.issue=3-4&rft.spage=341&rft.epage=353&rft.pages=341-353&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.1008&rft_dat=%3Cproquest_cross%3E753652628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753652628&rft_id=info:pmid/&rfr_iscdi=true |