Loading…

Gibbs point process models with mixed effects

We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we disc...

Full description

Saved in:
Bibliographic Details
Published in:Environmetrics (London, Ont.) Ont.), 2010-05, Vol.21 (3-4), p.341-353
Main Authors: Illian, Janine B., Hendrichsen, Ditte K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103
cites cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103
container_end_page 353
container_issue 3-4
container_start_page 341
container_title Environmetrics (London, Ont.)
container_volume 21
creator Illian, Janine B.
Hendrichsen, Ditte K.
description We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993). The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/env.1008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753652628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753652628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</originalsourceid><addsrcrecordid>eNp10DtPwzAUBWALgUQpSPyEbLAY7KR-jai0AakqCy-xWI59LQxJU-L09e9JVITEwHTP8Onq6CB0TskVJSS9hsW6D_IADShRChPFXg-7TCXBI0LUMTqJ8YN0iTMxQDgPRRGTZR0WbbJsagsxJlXtoIzJJrTvSRW24BLwHmwbT9GRN2WEs587RE_TyeP4Ds8e8vvxzQzbLGMSF8ry1DErmCNKSp8aEJ67gkonhTHMKu-kkt502qW08MBHFKBrZMQIKMmG6GL_t2v0tYLY6ipEC2VpFlCvohYs4yzlqezk5V7apo6xAa-XTahMs9OU6H4Q3Q3Sh57iPd2EEnb_Oj2ZP__1Ibaw_fWm-dRcZILpl3mueSbS6dvtTOfZNzVocBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753652628</pqid></control><display><type>article</type><title>Gibbs point process models with mixed effects</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Illian, Janine B. ; Hendrichsen, Ditte K.</creator><creatorcontrib>Illian, Janine B. ; Hendrichsen, Ditte K.</creatorcontrib><description>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993). The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.1008</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Berman-Turner device ; glmm ; mixed effects ; replicated spatial patterns ; spatial point process models</subject><ispartof>Environmetrics (London, Ont.), 2010-05, Vol.21 (3-4), p.341-353</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</citedby><cites>FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Illian, Janine B.</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K.</creatorcontrib><title>Gibbs point process models with mixed effects</title><title>Environmetrics (London, Ont.)</title><addtitle>Environmetrics</addtitle><description>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993). The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Berman-Turner device</subject><subject>glmm</subject><subject>mixed effects</subject><subject>replicated spatial patterns</subject><subject>spatial point process models</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUBWALgUQpSPyEbLAY7KR-jai0AakqCy-xWI59LQxJU-L09e9JVITEwHTP8Onq6CB0TskVJSS9hsW6D_IADShRChPFXg-7TCXBI0LUMTqJ8YN0iTMxQDgPRRGTZR0WbbJsagsxJlXtoIzJJrTvSRW24BLwHmwbT9GRN2WEs587RE_TyeP4Ds8e8vvxzQzbLGMSF8ry1DErmCNKSp8aEJ67gkonhTHMKu-kkt502qW08MBHFKBrZMQIKMmG6GL_t2v0tYLY6ipEC2VpFlCvohYs4yzlqezk5V7apo6xAa-XTahMs9OU6H4Q3Q3Sh57iPd2EEnb_Oj2ZP__1Ibaw_fWm-dRcZILpl3mueSbS6dvtTOfZNzVocBU</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Illian, Janine B.</creator><creator>Hendrichsen, Ditte K.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201005</creationdate><title>Gibbs point process models with mixed effects</title><author>Illian, Janine B. ; Hendrichsen, Ditte K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Berman-Turner device</topic><topic>glmm</topic><topic>mixed effects</topic><topic>replicated spatial patterns</topic><topic>spatial point process models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illian, Janine B.</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illian, Janine B.</au><au>Hendrichsen, Ditte K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gibbs point process models with mixed effects</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><addtitle>Environmetrics</addtitle><date>2010-05</date><risdate>2010</risdate><volume>21</volume><issue>3-4</issue><spage>341</spage><epage>353</epage><pages>341-353</pages><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>We consider spatial point patterns that have been observed repeatedly in the same area at several points in time. We take a maximum pseudolikelihood approach (besag :1976) to parameter estimation in the context of Gibbs processes (Stoyan et al., 1995, Illian et al., 2008). More specifically, we discuss pair‐wise interaction processes where the conditional intensity has a log‐linear form and extend existing models by expressing the intensity and the interaction terms in the pseudolikelihood as a sum of fixed and random effects, where the latter accounts for variation over time. We initially derive a Strauss process model with mixed effects. As this model is too simplistic in the given context, we further consider a more general model that allows for inter‐group differences in intensity and interaction strength and has a more flexible interaction function. We apply the approximate Berman–Turner device (Baddeley and Turner, 2000) to a generalised linear mixed model with log link and Poisson outcome rather than a simple generalised linear model. Estimates are obtained using existing software for generalised linear mixed models based on penalised quasi‐likelihood methods (Bresow and Clayton, 1993). The approach is applied to a data set detailing the spatial locations of different types of muskoxen herds in a fixed area in Greenland at different points in time within several years (Meltofte and Berg, 2004). Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/env.1008</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2010-05, Vol.21 (3-4), p.341-353
issn 1180-4009
1099-095X
language eng
recordid cdi_proquest_miscellaneous_753652628
source Wiley-Blackwell Read & Publish Collection
subjects Berman-Turner device
glmm
mixed effects
replicated spatial patterns
spatial point process models
title Gibbs point process models with mixed effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gibbs%20point%20process%20models%20with%20mixed%20effects&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Illian,%20Janine%20B.&rft.date=2010-05&rft.volume=21&rft.issue=3-4&rft.spage=341&rft.epage=353&rft.pages=341-353&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.1008&rft_dat=%3Cproquest_cross%3E753652628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3358-b9c62d5c75d0988f2ae7f6db18d87aa5c9fd898fa335d21bfe641ee965a74e103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753652628&rft_id=info:pmid/&rfr_iscdi=true