Loading…
Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities
We present a meso‐scale model for failure of heterogeneous quasi‐brittle materials. The model problem of heterogeneous materials that is addressed in detail is based on two‐phase 3D representation of reinforced heterogeneous materials, such as concrete, where the inclusions are melt within the matri...
Saved in:
Published in: | International journal for numerical methods in engineering 2010-06, Vol.82 (13), p.1671-1688 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a meso‐scale model for failure of heterogeneous quasi‐brittle materials. The model problem of heterogeneous materials that is addressed in detail is based on two‐phase 3D representation of reinforced heterogeneous materials, such as concrete, where the inclusions are melt within the matrix. The quasi‐brittle failure mechanisms are described by the spatial truss representation, which is defined by the chosen Voronoi mesh. In order to explicitly incorporate heterogeneities with no need to change this mesh, some bar elements are cut by the phase‐interface and must be split into two parts. Any such element is enhanced using both weak and strong discontinuities, based upon the Incompatible Mode Method. Furthermore, a dedicated operator split solution procedure is proposed to keep local any additional computation on elements with embedded discontinuities. The results for several numerical simulations are presented to illustrate the capabilities of the proposed model to provide an excellent representation of failure mechanisms for any different macroscopic loading path. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.2816 |