Loading…

Pattern recognition in nonoverlapping background with noisy target image

In the design of conventional correlation filters for pattern recognition, the appearance and the shape of a target are assumed to be known. In this work, the target is assumed to have unknown coordinates in a noise-corrupted reference image. We obtain a filter th at is optimal in terms of the ratio...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition and image analysis 2010-06, Vol.20 (2), p.163-168
Main Authors: Aguilar-Gonzàlez, P. M., Kober, V., Ovseyevich, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2140-2009742ca521ad2a2b81a176cdee5fe7a03a36f4a99347cde242b1b9b3518d003
container_end_page 168
container_issue 2
container_start_page 163
container_title Pattern recognition and image analysis
container_volume 20
creator Aguilar-Gonzàlez, P. M.
Kober, V.
Ovseyevich, I. A.
description In the design of conventional correlation filters for pattern recognition, the appearance and the shape of a target are assumed to be known. In this work, the target is assumed to have unknown coordinates in a noise-corrupted reference image. We obtain a filter th at is optimal in terms of the ratio of the correlation peak to the energy of the correlation plane. Computer simulation is used to compare the performance of the conventional and the developed filters with regard to the detection of targets.
doi_str_mv 10.1134/S1054661810020070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753658643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753658643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2140-2009742ca521ad2a2b81a176cdee5fe7a03a36f4a99347cde242b1b9b3518d003</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Bi6fqTD76cZRFXUFQUM8lbdOatZvUpFX235tlBUHxNMO8zzvMvIScIlwgcnH5hCBFmmKOAAwggz0yQyllkjJk-7GPcrLVD8lRCCsAyLFgM7J8VOOovaVe166zZjTOUmOpddZ9aN-rYTC2o5Wq3zrvJtvQTzO-RtmEDR2V7_RIzVp1-pgctKoP-uS7zsnLzfXzYpncP9zeLa7uk5qhgCTeVmSC1UoyVA1TrMpRYZbWjday1ZkCrnjaClUUXGRxygSrsCoqLjFvAPicnO_2Dt69TzqM5dqEWve9stpNocwkT2WeCh7Js1_kyk3exuNKmcWcGAMWIdxBtXcheN2Wg4__-E2JUG6TLf8kGz1s5wmRtZ32P4v_N30BRA95mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>578102202</pqid></control><display><type>article</type><title>Pattern recognition in nonoverlapping background with noisy target image</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Aguilar-Gonzàlez, P. M. ; Kober, V. ; Ovseyevich, I. A.</creator><creatorcontrib>Aguilar-Gonzàlez, P. M. ; Kober, V. ; Ovseyevich, I. A.</creatorcontrib><description>In the design of conventional correlation filters for pattern recognition, the appearance and the shape of a target are assumed to be known. In this work, the target is assumed to have unknown coordinates in a noise-corrupted reference image. We obtain a filter th at is optimal in terms of the ratio of the correlation peak to the energy of the correlation plane. Computer simulation is used to compare the performance of the conventional and the developed filters with regard to the detection of targets.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661810020070</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Background noise ; Computer Science ; Computer simulation ; Correlation ; Design engineering ; Expected values ; Fourier transforms ; Image analysis ; Image Processing and Computer Vision ; Mathematical Methods in Pattern Recognition ; Noise ; Optimization ; Pattern Recognition ; Studies</subject><ispartof>Pattern recognition and image analysis, 2010-06, Vol.20 (2), p.163-168</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2140-2009742ca521ad2a2b81a176cdee5fe7a03a36f4a99347cde242b1b9b3518d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/578102202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Aguilar-Gonzàlez, P. M.</creatorcontrib><creatorcontrib>Kober, V.</creatorcontrib><creatorcontrib>Ovseyevich, I. A.</creatorcontrib><title>Pattern recognition in nonoverlapping background with noisy target image</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In the design of conventional correlation filters for pattern recognition, the appearance and the shape of a target are assumed to be known. In this work, the target is assumed to have unknown coordinates in a noise-corrupted reference image. We obtain a filter th at is optimal in terms of the ratio of the correlation peak to the energy of the correlation plane. Computer simulation is used to compare the performance of the conventional and the developed filters with regard to the detection of targets.</description><subject>Background noise</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Design engineering</subject><subject>Expected values</subject><subject>Fourier transforms</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical Methods in Pattern Recognition</subject><subject>Noise</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Studies</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Bi6fqTD76cZRFXUFQUM8lbdOatZvUpFX235tlBUHxNMO8zzvMvIScIlwgcnH5hCBFmmKOAAwggz0yQyllkjJk-7GPcrLVD8lRCCsAyLFgM7J8VOOovaVe166zZjTOUmOpddZ9aN-rYTC2o5Wq3zrvJtvQTzO-RtmEDR2V7_RIzVp1-pgctKoP-uS7zsnLzfXzYpncP9zeLa7uk5qhgCTeVmSC1UoyVA1TrMpRYZbWjday1ZkCrnjaClUUXGRxygSrsCoqLjFvAPicnO_2Dt69TzqM5dqEWve9stpNocwkT2WeCh7Js1_kyk3exuNKmcWcGAMWIdxBtXcheN2Wg4__-E2JUG6TLf8kGz1s5wmRtZ32P4v_N30BRA95mQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Aguilar-Gonzàlez, P. M.</creator><creator>Kober, V.</creator><creator>Ovseyevich, I. A.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100601</creationdate><title>Pattern recognition in nonoverlapping background with noisy target image</title><author>Aguilar-Gonzàlez, P. M. ; Kober, V. ; Ovseyevich, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2140-2009742ca521ad2a2b81a176cdee5fe7a03a36f4a99347cde242b1b9b3518d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Background noise</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Design engineering</topic><topic>Expected values</topic><topic>Fourier transforms</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical Methods in Pattern Recognition</topic><topic>Noise</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-Gonzàlez, P. M.</creatorcontrib><creatorcontrib>Kober, V.</creatorcontrib><creatorcontrib>Ovseyevich, I. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar-Gonzàlez, P. M.</au><au>Kober, V.</au><au>Ovseyevich, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition in nonoverlapping background with noisy target image</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>20</volume><issue>2</issue><spage>163</spage><epage>168</epage><pages>163-168</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In the design of conventional correlation filters for pattern recognition, the appearance and the shape of a target are assumed to be known. In this work, the target is assumed to have unknown coordinates in a noise-corrupted reference image. We obtain a filter th at is optimal in terms of the ratio of the correlation peak to the energy of the correlation plane. Computer simulation is used to compare the performance of the conventional and the developed filters with regard to the detection of targets.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1054661810020070</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2010-06, Vol.20 (2), p.163-168
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_miscellaneous_753658643
source ABI/INFORM Global; Springer Nature
subjects Background noise
Computer Science
Computer simulation
Correlation
Design engineering
Expected values
Fourier transforms
Image analysis
Image Processing and Computer Vision
Mathematical Methods in Pattern Recognition
Noise
Optimization
Pattern Recognition
Studies
title Pattern recognition in nonoverlapping background with noisy target image
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20in%20nonoverlapping%20background%20with%20noisy%20target%20image&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Aguilar-Gonz%C3%A0lez,%20P.%20M.&rft.date=2010-06-01&rft.volume=20&rft.issue=2&rft.spage=163&rft.epage=168&rft.pages=163-168&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661810020070&rft_dat=%3Cproquest_cross%3E753658643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2140-2009742ca521ad2a2b81a176cdee5fe7a03a36f4a99347cde242b1b9b3518d003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=578102202&rft_id=info:pmid/&rfr_iscdi=true