Loading…
Calcium Phosphate Ceramics as Bone Drug-Combined Devices
The use of bone grafts is constantly increasing, their employ is principally linked to bone trauma, prosthesis revision surgery, and arthrodesis applications. In the case of biological bone grafts and depending on the origin of the graft, these grafts are classified as autografts, allografts, or xen...
Saved in:
Published in: | Key engineering materials 2010-01, Vol.441, p.181-201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of bone grafts is constantly increasing, their employ is principally linked to bone trauma, prosthesis revision surgery, and arthrodesis applications. In the case of biological bone grafts and depending on the origin of the graft, these grafts are classified as autografts, allografts, or xenografts. The autograft is the most commonly used and corresponds to a fresh bone graft harvesting taken from a second operating site, i.e. iliac crest, parietal bone, tibial plateaux or the fibula. The autograft has many advantages in terms of biotolerance and osteogenic potential, which justify its widespread utilization in reconstructive surgery[1]. From a practical point of view, sampling and grafting take place during the same surgical session. However, the longer exposure to the anesthetic and the surgical operation per se increases the risk of complications. For example, this procedure results in sever post-operation pain, iliac hernias, or even haemorrhages[2]. Furthermore, the volume of the bone graft taken is generally limited to 20 cm3. In the case of allografts, it generally leads to an acute inflammatory reaction which participates to the resorption/substitution process. Xenografts are less used since it involves a donor and a recipient from different species. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.441.181 |