Loading…

A framework for on-line trend extraction and fault diagnosis

Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interva...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2010-09, Vol.23 (6), p.950-960
Main Authors: Maurya, Mano Ram, Paritosh, Praveen K., Rengaswamy, Raghunathan, Venkatasubramanian, Venkat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3
cites cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3
container_end_page 960
container_issue 6
container_start_page 950
container_title Engineering applications of artificial intelligence
container_volume 23
creator Maurya, Mano Ram
Paritosh, Praveen K.
Rengaswamy, Raghunathan
Venkatasubramanian, Venkat
description Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in Matlab ® . Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.
doi_str_mv 10.1016/j.engappai.2010.01.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753684126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197610000680</els_id><sourcerecordid>753684126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbnaupNMslkwIWl-IKCG12HNHNTUqfJmEx9_HunVNeuDvdwzoH7EXJJYUaByuvNDMPa9L3xMwajCXQGrD4iE6pqXspaNsdkAo1gJW1qeUrOct4AAFeVnJCbeeGS2eJnTG-Fi6mIoex8wGJIGNoCv4Zk7OBjKMx4OrPrhqL1Zh1i9vmcnDjTZbz41Sl5vb97WTyWy-eHp8V8WdqKwlA65axojOIgeFMpaZRpGtNagYIb1rhKIJfCAmXKWmit5QLtilWswpUFafiUXB12-xTfd5gHvfXZYteZgHGXdS24VBVlckzKQ9KmmHNCp_vktyZ9awp6T0tv9B8tvaelgeqR1li8PRRx_OPDY9LZegwWW5_QDrqN_r-JH59Ddps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753684126</pqid></control><display><type>article</type><title>A framework for on-line trend extraction and fault diagnosis</title><source>ScienceDirect Journals</source><creator>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</creator><creatorcontrib>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</creatorcontrib><description>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in Matlab ® . Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2010.01.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Extraction ; Fault detection ; Fault diagnosis ; Faults ; Matlab ; On-line ; On-line systems ; Qualitative trend analysis ; Tennessee Eastman process ; Trends</subject><ispartof>Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.950-960</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</citedby><cites>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maurya, Mano Ram</creatorcontrib><creatorcontrib>Paritosh, Praveen K.</creatorcontrib><creatorcontrib>Rengaswamy, Raghunathan</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><title>A framework for on-line trend extraction and fault diagnosis</title><title>Engineering applications of artificial intelligence</title><description>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in Matlab ® . Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</description><subject>Algorithms</subject><subject>Extraction</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Matlab</subject><subject>On-line</subject><subject>On-line systems</subject><subject>Qualitative trend analysis</subject><subject>Tennessee Eastman process</subject><subject>Trends</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbnaupNMslkwIWl-IKCG12HNHNTUqfJmEx9_HunVNeuDvdwzoH7EXJJYUaByuvNDMPa9L3xMwajCXQGrD4iE6pqXspaNsdkAo1gJW1qeUrOct4AAFeVnJCbeeGS2eJnTG-Fi6mIoex8wGJIGNoCv4Zk7OBjKMx4OrPrhqL1Zh1i9vmcnDjTZbz41Sl5vb97WTyWy-eHp8V8WdqKwlA65axojOIgeFMpaZRpGtNagYIb1rhKIJfCAmXKWmit5QLtilWswpUFafiUXB12-xTfd5gHvfXZYteZgHGXdS24VBVlckzKQ9KmmHNCp_vktyZ9awp6T0tv9B8tvaelgeqR1li8PRRx_OPDY9LZegwWW5_QDrqN_r-JH59Ddps</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Maurya, Mano Ram</creator><creator>Paritosh, Praveen K.</creator><creator>Rengaswamy, Raghunathan</creator><creator>Venkatasubramanian, Venkat</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>A framework for on-line trend extraction and fault diagnosis</title><author>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Extraction</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Matlab</topic><topic>On-line</topic><topic>On-line systems</topic><topic>Qualitative trend analysis</topic><topic>Tennessee Eastman process</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurya, Mano Ram</creatorcontrib><creatorcontrib>Paritosh, Praveen K.</creatorcontrib><creatorcontrib>Rengaswamy, Raghunathan</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurya, Mano Ram</au><au>Paritosh, Praveen K.</au><au>Rengaswamy, Raghunathan</au><au>Venkatasubramanian, Venkat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for on-line trend extraction and fault diagnosis</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>23</volume><issue>6</issue><spage>950</spage><epage>960</epage><pages>950-960</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in Matlab ® . Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2010.01.027</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.950-960
issn 0952-1976
1873-6769
language eng
recordid cdi_proquest_miscellaneous_753684126
source ScienceDirect Journals
subjects Algorithms
Extraction
Fault detection
Fault diagnosis
Faults
Matlab
On-line
On-line systems
Qualitative trend analysis
Tennessee Eastman process
Trends
title A framework for on-line trend extraction and fault diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20on-line%20trend%20extraction%20and%20fault%20diagnosis&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Maurya,%20Mano%20Ram&rft.date=2010-09-01&rft.volume=23&rft.issue=6&rft.spage=950&rft.epage=960&rft.pages=950-960&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2010.01.027&rft_dat=%3Cproquest_cross%3E753684126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753684126&rft_id=info:pmid/&rfr_iscdi=true