Loading…
A framework for on-line trend extraction and fault diagnosis
Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interva...
Saved in:
Published in: | Engineering applications of artificial intelligence 2010-09, Vol.23 (6), p.950-960 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3 |
container_end_page | 960 |
container_issue | 6 |
container_start_page | 950 |
container_title | Engineering applications of artificial intelligence |
container_volume | 23 |
creator | Maurya, Mano Ram Paritosh, Praveen K. Rengaswamy, Raghunathan Venkatasubramanian, Venkat |
description | Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in
Matlab
®
. Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented. |
doi_str_mv | 10.1016/j.engappai.2010.01.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753684126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197610000680</els_id><sourcerecordid>753684126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbnaupNMslkwIWl-IKCG12HNHNTUqfJmEx9_HunVNeuDvdwzoH7EXJJYUaByuvNDMPa9L3xMwajCXQGrD4iE6pqXspaNsdkAo1gJW1qeUrOct4AAFeVnJCbeeGS2eJnTG-Fi6mIoex8wGJIGNoCv4Zk7OBjKMx4OrPrhqL1Zh1i9vmcnDjTZbz41Sl5vb97WTyWy-eHp8V8WdqKwlA65axojOIgeFMpaZRpGtNagYIb1rhKIJfCAmXKWmit5QLtilWswpUFafiUXB12-xTfd5gHvfXZYteZgHGXdS24VBVlckzKQ9KmmHNCp_vktyZ9awp6T0tv9B8tvaelgeqR1li8PRRx_OPDY9LZegwWW5_QDrqN_r-JH59Ddps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753684126</pqid></control><display><type>article</type><title>A framework for on-line trend extraction and fault diagnosis</title><source>ScienceDirect Journals</source><creator>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</creator><creatorcontrib>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</creatorcontrib><description>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in
Matlab
®
. Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2010.01.027</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Extraction ; Fault detection ; Fault diagnosis ; Faults ; Matlab ; On-line ; On-line systems ; Qualitative trend analysis ; Tennessee Eastman process ; Trends</subject><ispartof>Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.950-960</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</citedby><cites>FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maurya, Mano Ram</creatorcontrib><creatorcontrib>Paritosh, Praveen K.</creatorcontrib><creatorcontrib>Rengaswamy, Raghunathan</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><title>A framework for on-line trend extraction and fault diagnosis</title><title>Engineering applications of artificial intelligence</title><description>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in
Matlab
®
. Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</description><subject>Algorithms</subject><subject>Extraction</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Matlab</subject><subject>On-line</subject><subject>On-line systems</subject><subject>Qualitative trend analysis</subject><subject>Tennessee Eastman process</subject><subject>Trends</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbnaupNMslkwIWl-IKCG12HNHNTUqfJmEx9_HunVNeuDvdwzoH7EXJJYUaByuvNDMPa9L3xMwajCXQGrD4iE6pqXspaNsdkAo1gJW1qeUrOct4AAFeVnJCbeeGS2eJnTG-Fi6mIoex8wGJIGNoCv4Zk7OBjKMx4OrPrhqL1Zh1i9vmcnDjTZbz41Sl5vb97WTyWy-eHp8V8WdqKwlA65axojOIgeFMpaZRpGtNagYIb1rhKIJfCAmXKWmit5QLtilWswpUFafiUXB12-xTfd5gHvfXZYteZgHGXdS24VBVlckzKQ9KmmHNCp_vktyZ9awp6T0tv9B8tvaelgeqR1li8PRRx_OPDY9LZegwWW5_QDrqN_r-JH59Ddps</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Maurya, Mano Ram</creator><creator>Paritosh, Praveen K.</creator><creator>Rengaswamy, Raghunathan</creator><creator>Venkatasubramanian, Venkat</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>A framework for on-line trend extraction and fault diagnosis</title><author>Maurya, Mano Ram ; Paritosh, Praveen K. ; Rengaswamy, Raghunathan ; Venkatasubramanian, Venkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Extraction</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Matlab</topic><topic>On-line</topic><topic>On-line systems</topic><topic>Qualitative trend analysis</topic><topic>Tennessee Eastman process</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurya, Mano Ram</creatorcontrib><creatorcontrib>Paritosh, Praveen K.</creatorcontrib><creatorcontrib>Rengaswamy, Raghunathan</creatorcontrib><creatorcontrib>Venkatasubramanian, Venkat</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurya, Mano Ram</au><au>Paritosh, Praveen K.</au><au>Rengaswamy, Raghunathan</au><au>Venkatasubramanian, Venkat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for on-line trend extraction and fault diagnosis</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>23</volume><issue>6</issue><spage>950</spage><epage>960</epage><pages>950-960</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Qualitative trend analysis (QTA) is a process-history-based data-driven technique that works by extracting important features (trends) from the measured signals and evaluating the trends. QTA has been widely used for process fault detection and diagnosis. Recently, Dash et al. [2004. A novel interval-halving framework for automated identification of process trends. AIChE Journal 50 (1), 149–162] presented an interval-halving-based algorithm for off-line automatic trend extraction from a record of data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA also has been presented. Some of the issues addressed are: (i) development of a robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii) estimation of the fault occurrence time, (iv) on-line trend-matching, and (v) updating the QTA-knowledge-base when a novel fault is diagnosed manually. A prototype QTA-based diagnostic system has been developed in
Matlab
®
. Results for fault diagnosis of the Tennessee Eastman process using the developed framework are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2010.01.027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.950-960 |
issn | 0952-1976 1873-6769 |
language | eng |
recordid | cdi_proquest_miscellaneous_753684126 |
source | ScienceDirect Journals |
subjects | Algorithms Extraction Fault detection Fault diagnosis Faults Matlab On-line On-line systems Qualitative trend analysis Tennessee Eastman process Trends |
title | A framework for on-line trend extraction and fault diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20on-line%20trend%20extraction%20and%20fault%20diagnosis&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Maurya,%20Mano%20Ram&rft.date=2010-09-01&rft.volume=23&rft.issue=6&rft.spage=950&rft.epage=960&rft.pages=950-960&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2010.01.027&rft_dat=%3Cproquest_cross%3E753684126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-f8fc59a830539486a8a99adc5e53a29f45e365c0128cc0dcc35ecb2424ebc06a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753684126&rft_id=info:pmid/&rfr_iscdi=true |