Loading…

Antiferro to superparamagnetic transition on Mn doping in NiO

We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping....

Full description

Saved in:
Bibliographic Details
Published in:Solid state communications 2010-08, Vol.150 (29), p.1342-1345
Main Authors: Mallick, P., Rath, Chandana, Rath, A., Banerjee, A., Mishra, N.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213
cites cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213
container_end_page 1345
container_issue 29
container_start_page 1342
container_title Solid state communications
container_volume 150
creator Mallick, P.
Rath, Chandana
Rath, A.
Banerjee, A.
Mishra, N.C.
description We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.
doi_str_mv 10.1016/j.ssc.2010.05.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753685534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109810002711</els_id><sourcerecordid>753685534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab3sRT7smm918IB5K8Quqveg5ZLOzJaVN1iQV_PemtHgUhnnM8N4b5iF0TXBFMGF36ypGU9U4z7itMKYnaEIEl2XNGTtFk7wRJcFSnKOLGNcYYy44maCHmUt2gBB8kXwRdyOEUQe91SsHyZoiBe2iTda7ItebK3o_WrcqrCve7fISnQ16E-HqiFP0-fT4MX8pF8vn1_lsURraylSKuiM9I0AIb4zohKSYCCkNA82YydhK2dWNHrjUPZZAaUfB4Ny1aLqa0Cm6PfiOwX_tICa1tdHAZqMd-F1UvKVMtC1tMpMcmCb4GAMMagx2q8OPIljtk1JrlZNS-6QUblXOJWtuju46Gr0Z8svGxj9hXUvJeD4xRfcHHuRXvy0EFY0FZ6C3AUxSvbf_XPkFnC59GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753685534</pqid></control><display><type>article</type><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><source>Elsevier</source><creator>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</creator><creatorcontrib>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</creatorcontrib><description>We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/j.ssc.2010.05.003</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Magnetic materials ; Antiferromagnetism ; B. Chemical synthesis ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystallites ; D. Doping ; D. Superparamagnetic ; Diamagnetism, paramagnetism and superparamagnetism ; Doping ; Exact sciences and technology ; Hysteresis loops ; Lattice parameters ; Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) ; Magnetic properties ; Magnetic properties and materials ; Magnetic semiconductors ; Magnetically ordered materials: other intrinsic properties ; Manganese ; Phases ; Physics ; Studies of specific magnetic materials</subject><ispartof>Solid state communications, 2010-08, Vol.150 (29), p.1342-1345</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</citedby><cites>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22996775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallick, P.</creatorcontrib><creatorcontrib>Rath, Chandana</creatorcontrib><creatorcontrib>Rath, A.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Mishra, N.C.</creatorcontrib><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><title>Solid state communications</title><description>We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</description><subject>A. Magnetic materials</subject><subject>Antiferromagnetism</subject><subject>B. Chemical synthesis</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystallites</subject><subject>D. Doping</subject><subject>D. Superparamagnetic</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Doping</subject><subject>Exact sciences and technology</subject><subject>Hysteresis loops</subject><subject>Lattice parameters</subject><subject>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic semiconductors</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Manganese</subject><subject>Phases</subject><subject>Physics</subject><subject>Studies of specific magnetic materials</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4Ab3sRT7smm918IB5K8Quqveg5ZLOzJaVN1iQV_PemtHgUhnnM8N4b5iF0TXBFMGF36ypGU9U4z7itMKYnaEIEl2XNGTtFk7wRJcFSnKOLGNcYYy44maCHmUt2gBB8kXwRdyOEUQe91SsHyZoiBe2iTda7ItebK3o_WrcqrCve7fISnQ16E-HqiFP0-fT4MX8pF8vn1_lsURraylSKuiM9I0AIb4zohKSYCCkNA82YydhK2dWNHrjUPZZAaUfB4Ny1aLqa0Cm6PfiOwX_tICa1tdHAZqMd-F1UvKVMtC1tMpMcmCb4GAMMagx2q8OPIljtk1JrlZNS-6QUblXOJWtuju46Gr0Z8svGxj9hXUvJeD4xRfcHHuRXvy0EFY0FZ6C3AUxSvbf_XPkFnC59GQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Mallick, P.</creator><creator>Rath, Chandana</creator><creator>Rath, A.</creator><creator>Banerjee, A.</creator><creator>Mishra, N.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><author>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Magnetic materials</topic><topic>Antiferromagnetism</topic><topic>B. Chemical synthesis</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystallites</topic><topic>D. Doping</topic><topic>D. Superparamagnetic</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Doping</topic><topic>Exact sciences and technology</topic><topic>Hysteresis loops</topic><topic>Lattice parameters</topic><topic>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic semiconductors</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Manganese</topic><topic>Phases</topic><topic>Physics</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallick, P.</creatorcontrib><creatorcontrib>Rath, Chandana</creatorcontrib><creatorcontrib>Rath, A.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Mishra, N.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallick, P.</au><au>Rath, Chandana</au><au>Rath, A.</au><au>Banerjee, A.</au><au>Mishra, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferro to superparamagnetic transition on Mn doping in NiO</atitle><jtitle>Solid state communications</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>150</volume><issue>29</issue><spage>1342</spage><epage>1345</epage><pages>1342-1345</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ssc.2010.05.003</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1098
ispartof Solid state communications, 2010-08, Vol.150 (29), p.1342-1345
issn 0038-1098
1879-2766
language eng
recordid cdi_proquest_miscellaneous_753685534
source Elsevier
subjects A. Magnetic materials
Antiferromagnetism
B. Chemical synthesis
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Crystallites
D. Doping
D. Superparamagnetic
Diamagnetism, paramagnetism and superparamagnetism
Doping
Exact sciences and technology
Hysteresis loops
Lattice parameters
Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)
Magnetic properties
Magnetic properties and materials
Magnetic semiconductors
Magnetically ordered materials: other intrinsic properties
Manganese
Phases
Physics
Studies of specific magnetic materials
title Antiferro to superparamagnetic transition on Mn doping in NiO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferro%20to%20superparamagnetic%20transition%20on%20Mn%20doping%20in%20NiO&rft.jtitle=Solid%20state%20communications&rft.au=Mallick,%20P.&rft.date=2010-08-01&rft.volume=150&rft.issue=29&rft.spage=1342&rft.epage=1345&rft.pages=1342-1345&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/j.ssc.2010.05.003&rft_dat=%3Cproquest_cross%3E753685534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753685534&rft_id=info:pmid/&rfr_iscdi=true