Loading…
Antiferro to superparamagnetic transition on Mn doping in NiO
We report the structural and magnetic properties of Ni 1− x Mn x O ( x = 0 to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping....
Saved in:
Published in: | Solid state communications 2010-08, Vol.150 (29), p.1342-1345 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213 |
container_end_page | 1345 |
container_issue | 29 |
container_start_page | 1342 |
container_title | Solid state communications |
container_volume | 150 |
creator | Mallick, P. Rath, Chandana Rath, A. Banerjee, A. Mishra, N.C. |
description | We report the structural and magnetic properties of Ni
1−
x
Mn
x
O (
x
=
0
to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation. |
doi_str_mv | 10.1016/j.ssc.2010.05.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753685534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109810002711</els_id><sourcerecordid>753685534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab3sRT7smm918IB5K8Quqveg5ZLOzJaVN1iQV_PemtHgUhnnM8N4b5iF0TXBFMGF36ypGU9U4z7itMKYnaEIEl2XNGTtFk7wRJcFSnKOLGNcYYy44maCHmUt2gBB8kXwRdyOEUQe91SsHyZoiBe2iTda7ItebK3o_WrcqrCve7fISnQ16E-HqiFP0-fT4MX8pF8vn1_lsURraylSKuiM9I0AIb4zohKSYCCkNA82YydhK2dWNHrjUPZZAaUfB4Ny1aLqa0Cm6PfiOwX_tICa1tdHAZqMd-F1UvKVMtC1tMpMcmCb4GAMMagx2q8OPIljtk1JrlZNS-6QUblXOJWtuju46Gr0Z8svGxj9hXUvJeD4xRfcHHuRXvy0EFY0FZ6C3AUxSvbf_XPkFnC59GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753685534</pqid></control><display><type>article</type><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><source>Elsevier</source><creator>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</creator><creatorcontrib>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</creatorcontrib><description>We report the structural and magnetic properties of Ni
1−
x
Mn
x
O (
x
=
0
to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/j.ssc.2010.05.003</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Magnetic materials ; Antiferromagnetism ; B. Chemical synthesis ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystallites ; D. Doping ; D. Superparamagnetic ; Diamagnetism, paramagnetism and superparamagnetism ; Doping ; Exact sciences and technology ; Hysteresis loops ; Lattice parameters ; Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) ; Magnetic properties ; Magnetic properties and materials ; Magnetic semiconductors ; Magnetically ordered materials: other intrinsic properties ; Manganese ; Phases ; Physics ; Studies of specific magnetic materials</subject><ispartof>Solid state communications, 2010-08, Vol.150 (29), p.1342-1345</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</citedby><cites>FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22996775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallick, P.</creatorcontrib><creatorcontrib>Rath, Chandana</creatorcontrib><creatorcontrib>Rath, A.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Mishra, N.C.</creatorcontrib><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><title>Solid state communications</title><description>We report the structural and magnetic properties of Ni
1−
x
Mn
x
O (
x
=
0
to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</description><subject>A. Magnetic materials</subject><subject>Antiferromagnetism</subject><subject>B. Chemical synthesis</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystallites</subject><subject>D. Doping</subject><subject>D. Superparamagnetic</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Doping</subject><subject>Exact sciences and technology</subject><subject>Hysteresis loops</subject><subject>Lattice parameters</subject><subject>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</subject><subject>Magnetic properties</subject><subject>Magnetic properties and materials</subject><subject>Magnetic semiconductors</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Manganese</subject><subject>Phases</subject><subject>Physics</subject><subject>Studies of specific magnetic materials</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4Ab3sRT7smm918IB5K8Quqveg5ZLOzJaVN1iQV_PemtHgUhnnM8N4b5iF0TXBFMGF36ypGU9U4z7itMKYnaEIEl2XNGTtFk7wRJcFSnKOLGNcYYy44maCHmUt2gBB8kXwRdyOEUQe91SsHyZoiBe2iTda7ItebK3o_WrcqrCve7fISnQ16E-HqiFP0-fT4MX8pF8vn1_lsURraylSKuiM9I0AIb4zohKSYCCkNA82YydhK2dWNHrjUPZZAaUfB4Ny1aLqa0Cm6PfiOwX_tICa1tdHAZqMd-F1UvKVMtC1tMpMcmCb4GAMMagx2q8OPIljtk1JrlZNS-6QUblXOJWtuju46Gr0Z8svGxj9hXUvJeD4xRfcHHuRXvy0EFY0FZ6C3AUxSvbf_XPkFnC59GQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Mallick, P.</creator><creator>Rath, Chandana</creator><creator>Rath, A.</creator><creator>Banerjee, A.</creator><creator>Mishra, N.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>Antiferro to superparamagnetic transition on Mn doping in NiO</title><author>Mallick, P. ; Rath, Chandana ; Rath, A. ; Banerjee, A. ; Mishra, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Magnetic materials</topic><topic>Antiferromagnetism</topic><topic>B. Chemical synthesis</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystallites</topic><topic>D. Doping</topic><topic>D. Superparamagnetic</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Doping</topic><topic>Exact sciences and technology</topic><topic>Hysteresis loops</topic><topic>Lattice parameters</topic><topic>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</topic><topic>Magnetic properties</topic><topic>Magnetic properties and materials</topic><topic>Magnetic semiconductors</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Manganese</topic><topic>Phases</topic><topic>Physics</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallick, P.</creatorcontrib><creatorcontrib>Rath, Chandana</creatorcontrib><creatorcontrib>Rath, A.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Mishra, N.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallick, P.</au><au>Rath, Chandana</au><au>Rath, A.</au><au>Banerjee, A.</au><au>Mishra, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferro to superparamagnetic transition on Mn doping in NiO</atitle><jtitle>Solid state communications</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>150</volume><issue>29</issue><spage>1342</spage><epage>1345</epage><pages>1342-1345</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>We report the structural and magnetic properties of Ni
1−
x
Mn
x
O (
x
=
0
to 0.05) prepared by chemical method. Within the XRD resolution, no impurity phases could be detected up to 5 at.% Mn doping in NiO. The fcc structure and the lattice parameter of host NiO matrix is not altered on Mn doping. The average crystallite size was found to remain almost constant (28 nm) up to 3 at.% Mn doping, beyond which it decreases to 21 nm for 5 at.% Mn doping in NiO. The magnetic properties on the other hand showed a drastic change with Mn doping. While 0 and 1 at.% Mn doped NiO showed antiferromagnetic behaviour down to 10 K, 3 and 5 at.% Mn doped NiO were superparamagnetic at 300 K with a blocking temperature of 186 and 171 K respectively. Clear hysteresis loops were thus observed for these samples at 10 K. The distribution of blocking temperature of the Mn doped NiO particles matches well with the distribution of particle size as obtained from TEM. The observed antiferro to superparamagnetic transition on Mn doping in NiO is understood on the basis of Mn occupying Ni site and breaking the translational symmetry of the parent antiferromagnetic correlation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ssc.2010.05.003</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-1098 |
ispartof | Solid state communications, 2010-08, Vol.150 (29), p.1342-1345 |
issn | 0038-1098 1879-2766 |
language | eng |
recordid | cdi_proquest_miscellaneous_753685534 |
source | Elsevier |
subjects | A. Magnetic materials Antiferromagnetism B. Chemical synthesis Condensed matter: electronic structure, electrical, magnetic, and optical properties Crystallites D. Doping D. Superparamagnetic Diamagnetism, paramagnetism and superparamagnetism Doping Exact sciences and technology Hysteresis loops Lattice parameters Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) Magnetic properties Magnetic properties and materials Magnetic semiconductors Magnetically ordered materials: other intrinsic properties Manganese Phases Physics Studies of specific magnetic materials |
title | Antiferro to superparamagnetic transition on Mn doping in NiO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferro%20to%20superparamagnetic%20transition%20on%20Mn%20doping%20in%20NiO&rft.jtitle=Solid%20state%20communications&rft.au=Mallick,%20P.&rft.date=2010-08-01&rft.volume=150&rft.issue=29&rft.spage=1342&rft.epage=1345&rft.pages=1342-1345&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/j.ssc.2010.05.003&rft_dat=%3Cproquest_cross%3E753685534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-82b1d61e1174c8b89301899c6ea66c9c6599b24af79ad09e33b3ec03b3a84b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753685534&rft_id=info:pmid/&rfr_iscdi=true |