Loading…

Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment

The thermo-oxidative degradation of a parchment recent manufactured from a goat skin has been investigated by TG/DTG, DSC simultaneous analysis performed in static air atmosphere, at six heating rates in the range 3–15 K min −1 . At the progressive heating in air atmosphere, the investigated materia...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2009-08, Vol.97 (2), p.443-451
Main Author: Budrugeac, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermo-oxidative degradation of a parchment recent manufactured from a goat skin has been investigated by TG/DTG, DSC simultaneous analysis performed in static air atmosphere, at six heating rates in the range 3–15 K min −1 . At the progressive heating in air atmosphere, the investigated material exhibits three main successive processes occurring with formation of volatile products, namely the dehydration followed by two thermo-oxidative processes. The processing of the non-isothermal data corresponding to the first process of thermo-oxidation was performed by using Netzsch Thermokinetics—a Software Module for Kinetic Analysis. The dependence of activation energy, evaluated by isoconversional methods suggested by Friedman, and Ozawa, Flynn and Wall, on the conversion degree and the relative high standard deviations of this quantity show that the investigated process is a complex one. The mechanism and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression program. Three mechanisms, one consisting in four successive steps and two others in five successive steps, exhibit the best F -test Fit Quality for TG curves. It was also used the previously suggested criterion, according to which the most probable process mechanism correspond to the best agreement between E FR  =  E FR (α) ( E FR is the activation energy evaluated by isoconversional method suggested by Friedman; α is the conversion degree) obtained from non-isothermal experimental data and activation energy values, E iso , obtained by applying the differential method to isothermal data simulated using non-isothermal kinetic parameters. According to this last criterion, the most probable mechanism of parchment oxidation consists in four successive steps. The contribution of the thermo-oxidation process in the parchment damage by natural aging is discussed.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-009-0081-9