Loading…
The probability function of a geometric Poisson distribution
The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed al...
Saved in:
Published in: | Journal of statistical computation and simulation 2010-05, Vol.80 (5), p.479-487 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463 |
container_end_page | 487 |
container_issue | 5 |
container_start_page | 479 |
container_title | Journal of statistical computation and simulation |
container_volume | 80 |
creator | Ozel, Gamze Inal, Ceyhan |
description | The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm. |
doi_str_mv | 10.1080/00949650802711925 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753692895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266748019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</originalsourceid><addsrcrecordid>eNqFkEtPAyEQgInRxFr9Ad42XvSyymN5Jb2YxlfSRA_1TFiWVZrtUoGN9t_Lpp406oVhhu9jYAA4RfASQQGvIJSVZDRvMUdIYroHJogyUlLEyD6YjOdlBughOIpxBSFEiOIJmC1fbbEJvta161zaFu3Qm-R8X_i20MWL9WubgjPFk3cx5nLjYs7rYWSOwUGru2hPvuIUPN_eLOf35eLx7mF-vShNRUQqjbYQN7rB0HBooa7rhpK8CEIsbyjOKSWcSQq1ELSqLGWcYFQJTrGGFSNTcL67Nz_0bbAxqbWLxnad7q0fouKUMImFpJm8-JNEmDFeCYhkRs--oSs_hD7_QxHKmBScjZ3RDjLBxxhsqzbBrXXYKgTVOHj1Y_DZ4TvH9a0Pa_3uQ9eopLedD23QvXHxp6XSR8rm7F-T_N74E-1AmQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>356698766</pqid></control><display><type>article</type><title>The probability function of a geometric Poisson distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ozel, Gamze ; Inal, Ceyhan</creator><creatorcontrib>Ozel, Gamze ; Inal, Ceyhan</creatorcontrib><description>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949650802711925</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; compound Poisson distribution ; Computation ; Computer simulation ; geometric Poisson distribution ; Geometry ; integer partitions ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Numerical analysis ; Oracle database ; Poisson distribution ; Poisson distributions ; Probability distribution ; Proving ; Pólya-Aeppli distribution ; Traffic accidents ; Traffic accidents & safety</subject><ispartof>Journal of statistical computation and simulation, 2010-05, Vol.80 (5), p.479-487</ispartof><rights>Copyright Taylor & Francis Group, LLC 2010</rights><rights>Copyright Taylor & Francis Ltd. May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</citedby><cites>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ozel, Gamze</creatorcontrib><creatorcontrib>Inal, Ceyhan</creatorcontrib><title>The probability function of a geometric Poisson distribution</title><title>Journal of statistical computation and simulation</title><description>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</description><subject>Algorithms</subject><subject>compound Poisson distribution</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>geometric Poisson distribution</subject><subject>Geometry</subject><subject>integer partitions</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Oracle database</subject><subject>Poisson distribution</subject><subject>Poisson distributions</subject><subject>Probability distribution</subject><subject>Proving</subject><subject>Pólya-Aeppli distribution</subject><subject>Traffic accidents</subject><subject>Traffic accidents & safety</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEQgInRxFr9Ad42XvSyymN5Jb2YxlfSRA_1TFiWVZrtUoGN9t_Lpp406oVhhu9jYAA4RfASQQGvIJSVZDRvMUdIYroHJogyUlLEyD6YjOdlBughOIpxBSFEiOIJmC1fbbEJvta161zaFu3Qm-R8X_i20MWL9WubgjPFk3cx5nLjYs7rYWSOwUGru2hPvuIUPN_eLOf35eLx7mF-vShNRUQqjbYQN7rB0HBooa7rhpK8CEIsbyjOKSWcSQq1ELSqLGWcYFQJTrGGFSNTcL67Nz_0bbAxqbWLxnad7q0fouKUMImFpJm8-JNEmDFeCYhkRs--oSs_hD7_QxHKmBScjZ3RDjLBxxhsqzbBrXXYKgTVOHj1Y_DZ4TvH9a0Pa_3uQ9eopLedD23QvXHxp6XSR8rm7F-T_N74E-1AmQU</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ozel, Gamze</creator><creator>Inal, Ceyhan</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201005</creationdate><title>The probability function of a geometric Poisson distribution</title><author>Ozel, Gamze ; Inal, Ceyhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>compound Poisson distribution</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>geometric Poisson distribution</topic><topic>Geometry</topic><topic>integer partitions</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Oracle database</topic><topic>Poisson distribution</topic><topic>Poisson distributions</topic><topic>Probability distribution</topic><topic>Proving</topic><topic>Pólya-Aeppli distribution</topic><topic>Traffic accidents</topic><topic>Traffic accidents & safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozel, Gamze</creatorcontrib><creatorcontrib>Inal, Ceyhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozel, Gamze</au><au>Inal, Ceyhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The probability function of a geometric Poisson distribution</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2010-05</date><risdate>2010</risdate><volume>80</volume><issue>5</issue><spage>479</spage><epage>487</epage><pages>479-487</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><abstract>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00949650802711925</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-9655 |
ispartof | Journal of statistical computation and simulation, 2010-05, Vol.80 (5), p.479-487 |
issn | 0094-9655 1563-5163 |
language | eng |
recordid | cdi_proquest_miscellaneous_753692895 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms compound Poisson distribution Computation Computer simulation geometric Poisson distribution Geometry integer partitions Mathematical analysis Mathematical functions Mathematical models Numerical analysis Oracle database Poisson distribution Poisson distributions Probability distribution Proving Pólya-Aeppli distribution Traffic accidents Traffic accidents & safety |
title | The probability function of a geometric Poisson distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20probability%20function%20of%20a%20geometric%20Poisson%20distribution&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Ozel,%20Gamze&rft.date=2010-05&rft.volume=80&rft.issue=5&rft.spage=479&rft.epage=487&rft.pages=479-487&rft.issn=0094-9655&rft.eissn=1563-5163&rft_id=info:doi/10.1080/00949650802711925&rft_dat=%3Cproquest_cross%3E1266748019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=356698766&rft_id=info:pmid/&rfr_iscdi=true |