Loading…

The probability function of a geometric Poisson distribution

The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed al...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation 2010-05, Vol.80 (5), p.479-487
Main Authors: Ozel, Gamze, Inal, Ceyhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463
cites cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463
container_end_page 487
container_issue 5
container_start_page 479
container_title Journal of statistical computation and simulation
container_volume 80
creator Ozel, Gamze
Inal, Ceyhan
description The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.
doi_str_mv 10.1080/00949650802711925
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753692895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266748019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</originalsourceid><addsrcrecordid>eNqFkEtPAyEQgInRxFr9Ad42XvSyymN5Jb2YxlfSRA_1TFiWVZrtUoGN9t_Lpp406oVhhu9jYAA4RfASQQGvIJSVZDRvMUdIYroHJogyUlLEyD6YjOdlBughOIpxBSFEiOIJmC1fbbEJvta161zaFu3Qm-R8X_i20MWL9WubgjPFk3cx5nLjYs7rYWSOwUGru2hPvuIUPN_eLOf35eLx7mF-vShNRUQqjbYQN7rB0HBooa7rhpK8CEIsbyjOKSWcSQq1ELSqLGWcYFQJTrGGFSNTcL67Nz_0bbAxqbWLxnad7q0fouKUMImFpJm8-JNEmDFeCYhkRs--oSs_hD7_QxHKmBScjZ3RDjLBxxhsqzbBrXXYKgTVOHj1Y_DZ4TvH9a0Pa_3uQ9eopLedD23QvXHxp6XSR8rm7F-T_N74E-1AmQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>356698766</pqid></control><display><type>article</type><title>The probability function of a geometric Poisson distribution</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ozel, Gamze ; Inal, Ceyhan</creator><creatorcontrib>Ozel, Gamze ; Inal, Ceyhan</creatorcontrib><description>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949650802711925</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; compound Poisson distribution ; Computation ; Computer simulation ; geometric Poisson distribution ; Geometry ; integer partitions ; Mathematical analysis ; Mathematical functions ; Mathematical models ; Numerical analysis ; Oracle database ; Poisson distribution ; Poisson distributions ; Probability distribution ; Proving ; Pólya-Aeppli distribution ; Traffic accidents ; Traffic accidents &amp; safety</subject><ispartof>Journal of statistical computation and simulation, 2010-05, Vol.80 (5), p.479-487</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>Copyright Taylor &amp; Francis Ltd. May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</citedby><cites>FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ozel, Gamze</creatorcontrib><creatorcontrib>Inal, Ceyhan</creatorcontrib><title>The probability function of a geometric Poisson distribution</title><title>Journal of statistical computation and simulation</title><description>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</description><subject>Algorithms</subject><subject>compound Poisson distribution</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>geometric Poisson distribution</subject><subject>Geometry</subject><subject>integer partitions</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Oracle database</subject><subject>Poisson distribution</subject><subject>Poisson distributions</subject><subject>Probability distribution</subject><subject>Proving</subject><subject>Pólya-Aeppli distribution</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEQgInRxFr9Ad42XvSyymN5Jb2YxlfSRA_1TFiWVZrtUoGN9t_Lpp406oVhhu9jYAA4RfASQQGvIJSVZDRvMUdIYroHJogyUlLEyD6YjOdlBughOIpxBSFEiOIJmC1fbbEJvta161zaFu3Qm-R8X_i20MWL9WubgjPFk3cx5nLjYs7rYWSOwUGru2hPvuIUPN_eLOf35eLx7mF-vShNRUQqjbYQN7rB0HBooa7rhpK8CEIsbyjOKSWcSQq1ELSqLGWcYFQJTrGGFSNTcL67Nz_0bbAxqbWLxnad7q0fouKUMImFpJm8-JNEmDFeCYhkRs--oSs_hD7_QxHKmBScjZ3RDjLBxxhsqzbBrXXYKgTVOHj1Y_DZ4TvH9a0Pa_3uQ9eopLedD23QvXHxp6XSR8rm7F-T_N74E-1AmQU</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ozel, Gamze</creator><creator>Inal, Ceyhan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201005</creationdate><title>The probability function of a geometric Poisson distribution</title><author>Ozel, Gamze ; Inal, Ceyhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>compound Poisson distribution</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>geometric Poisson distribution</topic><topic>Geometry</topic><topic>integer partitions</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Oracle database</topic><topic>Poisson distribution</topic><topic>Poisson distributions</topic><topic>Probability distribution</topic><topic>Proving</topic><topic>Pólya-Aeppli distribution</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozel, Gamze</creatorcontrib><creatorcontrib>Inal, Ceyhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozel, Gamze</au><au>Inal, Ceyhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The probability function of a geometric Poisson distribution</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2010-05</date><risdate>2010</risdate><volume>80</volume><issue>5</issue><spage>479</spage><epage>487</epage><pages>479-487</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><abstract>The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of the compound Poisson distribution. In this study, the explicit probability function of the geometric Poisson distribution is derived and a straightforward proof for this function is given. By means of a proposed algorithm, some numerical examples and an application on traffic accidents are also given to illustrate the usage of the probability function and proposed algorithm.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00949650802711925</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-9655
ispartof Journal of statistical computation and simulation, 2010-05, Vol.80 (5), p.479-487
issn 0094-9655
1563-5163
language eng
recordid cdi_proquest_miscellaneous_753692895
source Taylor and Francis Science and Technology Collection
subjects Algorithms
compound Poisson distribution
Computation
Computer simulation
geometric Poisson distribution
Geometry
integer partitions
Mathematical analysis
Mathematical functions
Mathematical models
Numerical analysis
Oracle database
Poisson distribution
Poisson distributions
Probability distribution
Proving
Pólya-Aeppli distribution
Traffic accidents
Traffic accidents & safety
title The probability function of a geometric Poisson distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20probability%20function%20of%20a%20geometric%20Poisson%20distribution&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Ozel,%20Gamze&rft.date=2010-05&rft.volume=80&rft.issue=5&rft.spage=479&rft.epage=487&rft.pages=479-487&rft.issn=0094-9655&rft.eissn=1563-5163&rft_id=info:doi/10.1080/00949650802711925&rft_dat=%3Cproquest_cross%3E1266748019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cae02dad20c70e0abbd53bbd833e7d52bd55376950a88544e56732148752a0463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=356698766&rft_id=info:pmid/&rfr_iscdi=true