Loading…
Nonlinear system identification using two-dimensional wavelet-based state-dependent parameter models
This article presents a nonlinear system identification approach that uses a two-dimensional (2-D) wavelet-based state-dependent parameter (SDP) model. In this method, differing from our previous approach, the SDP is a function with respect to two different state variables, which is realised by the...
Saved in:
Published in: | International journal of systems science 2009-11, Vol.40 (11), p.1161-1180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a nonlinear system identification approach that uses a two-dimensional (2-D) wavelet-based state-dependent parameter (SDP) model. In this method, differing from our previous approach, the SDP is a function with respect to two different state variables, which is realised by the use of a 2-D wavelet series expansion. Here, an optimised model structure selection is accomplished using a PRESS-based procedure in conjunction with orthogonal decomposition (OD) to avoid any ill-conditioning problems associated with the parameter estimation. Two simulation examples are provided to demonstrate the merits of the proposed approach. |
---|---|
ISSN: | 0020-7721 1464-5319 |
DOI: | 10.1080/00207720902985419 |