Loading…

Preparation and Characterization of Fe/SiC Ceramic-Metal Composites

SiC is a perfect reinforced material, characteristic of high hardness, high wear- and corrosion-resistant property, and low cost. SiC-reinforced iron-matrix composites show high wear resistance, high hardness, high inflexibility and high strength, with wide applications as superior wear-resistant an...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2010-01, Vol.434-435, p.66-68
Main Authors: Shao, Gang, Liu, Zhong Sheng, Chen, De Liang, Zhang, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SiC is a perfect reinforced material, characteristic of high hardness, high wear- and corrosion-resistant property, and low cost. SiC-reinforced iron-matrix composites show high wear resistance, high hardness, high inflexibility and high strength, with wide applications as superior wear-resistant and high temperature materials. This paper reported a heterogeneous precipitation method to coat SiC with copper particles. The vacuum hot-pressing method was used to sinter the Fe/SiC composites with Cu-coated SiC powders. The techniques of XRD and SEM were used to characterize the compositions and microstructures of the samples. The Archimedes method was used to test the density. The results showed that SiC and Cu were homogeneously mixed in the composite powders obtained by the heterogeneous deposition method, and that the composites with 5wt% of SiC (Cu) obtained at 950°C have a high relative density of 96%, a high hardness of 4121 MPa and a high bending strength of 646 MPa. The enhanced properties of Fe/SiC composites could result from the improved interfacial consistency by using Cu-coated SiC powders, which could inhibit some adverse interfacial reactions.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.434-435.66