Loading…
Mott physics and band topology in materials with strong spin-orbit interaction
Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qual...
Saved in:
Published in: | Nature physics 2010-05, Vol.6 (5), p.376-381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the topological band insulator is transformed into a ‘topological Mott insulator’ phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron–electron interaction.
Mott insulators are driven by strong Coulomb repulsion and topological insulators by strong spin–orbit coupling. Although these effects are normally in competition, in some cases the Coulomb interaction can enhance the effects of spin–orbit coupling. Together these interactions could lead to gapless spin-only excitations on the surface of a strongly correlated insulator. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/nphys1606 |