Loading…

Calibration procedures for a computational model of ductile fracture

A recent extension of the Gurson constitutive model of damage and failure of ductile structural alloys accounts for localization and crack formation under shearing as well as tension. When properly calibrated against a basic set of experiments, this model has the potential to predict the emergence a...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2010-02, Vol.77 (3), p.492-509
Main Authors: Xue, Z., Pontin, M.G., Zok, F.W., Hutchinson, J.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A recent extension of the Gurson constitutive model of damage and failure of ductile structural alloys accounts for localization and crack formation under shearing as well as tension. When properly calibrated against a basic set of experiments, this model has the potential to predict the emergence and propagation of cracks over a wide range of stress states. This paper addresses procedures for calibrating the damage parameters of the extended constitutive model. The procedures are demonstrated for DH36 steel using data from three tests: (i) tension of a round bar, (ii) mode I cracking in a compact tension specimen, and (iii) shear localization and mode II cracking in a shear-off specimen. The computational model is then used to study the emergence of the cup-cone fracture mode in the neck of a round tensile bar. Ductility of a notched round bar provides additional validation.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2009.10.007