Loading…
An analysis of future building energy use in subtropical Hong Kong
Principal component analysis of prevailing weather conditions in subtropical Hong Kong was conducted, and a new climatic index Z (as a function of the dry-bulb temperature, wet-bulb temperature and global solar radiation) determined for past (1979–2008, measurements made at local meteorological stat...
Saved in:
Published in: | Energy (Oxford) 2010-03, Vol.35 (3), p.1482-1490 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Principal component analysis of prevailing weather conditions in subtropical Hong Kong was conducted, and a new climatic index Z (as a function of the dry-bulb temperature, wet-bulb temperature and global solar radiation) determined for past (1979–2008, measurements made at local meteorological station) and future (2009–2100, predictions from general circulation models) years. Multi-year (1979–2008) building energy simulations were carried out for a generic office building. It was found that Z exhibited monthly and seasonal variations similar to the simulated cooling/heating loads and building energy use. Regression models were developed to correlate the simulated monthly building cooling loads and total energy use with the corresponding Z. Error analysis indicated that annual building energy use from the regression models were very close to the simulated values; the difference was about 1%. Difference in individual monthly cooling load and energy use, however, could be up to 4%. It was also found that both the DOE-simulated results during 1979–2008 and the regression-predicted data during 2009–2100 indicated an increasing trend in annual cooling load and energy use and a gradual reduction in the already insignificant heating requirement in cooling-dominated office buildings in subtropical climates. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2009.12.005 |