Loading…

Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler

Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2010-05, Vol.89 (5), p.1141-1149
Main Authors: Shieh, Shyan-Shu, Chang, Yi-Hsin, Jang, Shi-Shang, Ma, Ming-Da, Huang, Ta-Sung
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23
cites
container_end_page 1149
container_issue 5
container_start_page 1141
container_title Fuel (Guildford)
container_volume 89
creator Shieh, Shyan-Shu
Chang, Yi-Hsin
Jang, Shi-Shang
Ma, Ming-Da
Huang, Ta-Sung
description Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.
doi_str_mv 10.1016/j.fuel.2009.07.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236109003184</els_id><sourcerecordid>753739131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</originalsourceid><addsrcrecordid>eNp9kEuLFDEUhYMo2I7zB1xlI66qzKNSqQI3MviCARc663A7ucG0qcqYpBt6fv2k7MGlq1wO556c-xHyhrOeMz6-P_T-iLEXjM090z1j_BnZ8UnLTnMln5NdU8ZOyJG_JK9KOTDG9KSGHXn4UaGGUoOFSH_jmZ4gB9hHpLBCPJdQ2uDokhzGbg8FHbVprTlF6lOm9RfSsNzndMIF10qT36S8tDD0PtiAqz1vKtDlGGvotpp0n0LE_Jq88BALXj-9V-Tu86efN1-72-9fvt18vO3sIKbaIWfgR1DTMCnr5oE7bWc1O82Ed05aQI-Kaz8pPUg-IlqL4KxUIGbvrZBX5N0lt9X8c8RSzRKKxRhhxXQsRiup5cwlb05xcdqcSsnozX0OC-Sz4cxsnM3BbAeYjbNh2jSqbentUzyUBtFnWG0o_zaFGFmL32p8uPiw3XoKmE35iwddyGircSn875tHG7uWwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739131</pqid></control><display><type>article</type><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><source>ScienceDirect Freedom Collection</source><creator>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</creator><creatorcontrib>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</creatorcontrib><description>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2009.07.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiler ; Boilers ; Cogeneration ; Combined power plants ; Data mining ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy ; Steel and iron plant ; Thermal efficiency</subject><ispartof>Fuel (Guildford), 2010-05, Vol.89 (5), p.1141-1149</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22607392$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shieh, Shyan-Shu</creatorcontrib><creatorcontrib>Chang, Yi-Hsin</creatorcontrib><creatorcontrib>Jang, Shi-Shang</creatorcontrib><creatorcontrib>Ma, Ming-Da</creatorcontrib><creatorcontrib>Huang, Ta-Sung</creatorcontrib><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><title>Fuel (Guildford)</title><description>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</description><subject>Applied sciences</subject><subject>Boiler</subject><subject>Boilers</subject><subject>Cogeneration</subject><subject>Combined power plants</subject><subject>Data mining</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Steel and iron plant</subject><subject>Thermal efficiency</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEuLFDEUhYMo2I7zB1xlI66qzKNSqQI3MviCARc663A7ucG0qcqYpBt6fv2k7MGlq1wO556c-xHyhrOeMz6-P_T-iLEXjM090z1j_BnZ8UnLTnMln5NdU8ZOyJG_JK9KOTDG9KSGHXn4UaGGUoOFSH_jmZ4gB9hHpLBCPJdQ2uDokhzGbg8FHbVprTlF6lOm9RfSsNzndMIF10qT36S8tDD0PtiAqz1vKtDlGGvotpp0n0LE_Jq88BALXj-9V-Tu86efN1-72-9fvt18vO3sIKbaIWfgR1DTMCnr5oE7bWc1O82Ed05aQI-Kaz8pPUg-IlqL4KxUIGbvrZBX5N0lt9X8c8RSzRKKxRhhxXQsRiup5cwlb05xcdqcSsnozX0OC-Sz4cxsnM3BbAeYjbNh2jSqbentUzyUBtFnWG0o_zaFGFmL32p8uPiw3XoKmE35iwddyGircSn875tHG7uWwQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Shieh, Shyan-Shu</creator><creator>Chang, Yi-Hsin</creator><creator>Jang, Shi-Shang</creator><creator>Ma, Ming-Da</creator><creator>Huang, Ta-Sung</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><author>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boiler</topic><topic>Boilers</topic><topic>Cogeneration</topic><topic>Combined power plants</topic><topic>Data mining</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Steel and iron plant</topic><topic>Thermal efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shieh, Shyan-Shu</creatorcontrib><creatorcontrib>Chang, Yi-Hsin</creatorcontrib><creatorcontrib>Jang, Shi-Shang</creatorcontrib><creatorcontrib>Ma, Ming-Da</creatorcontrib><creatorcontrib>Huang, Ta-Sung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shieh, Shyan-Shu</au><au>Chang, Yi-Hsin</au><au>Jang, Shi-Shang</au><au>Ma, Ming-Da</au><au>Huang, Ta-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</atitle><jtitle>Fuel (Guildford)</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>89</volume><issue>5</issue><spage>1141</spage><epage>1149</epage><pages>1141-1149</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2009.07.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2010-05, Vol.89 (5), p.1141-1149
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_753739131
source ScienceDirect Freedom Collection
subjects Applied sciences
Boiler
Boilers
Cogeneration
Combined power plants
Data mining
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Installations for energy generation and conversion: thermal and electrical energy
Steel and iron plant
Thermal efficiency
title Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20key%20variable%20analysis%20and%20model-based%20control%20for%20the%20improvement%20of%20thermal%20efficiency%20of%20a%20multi-fuel%20boiler&rft.jtitle=Fuel%20(Guildford)&rft.au=Shieh,%20Shyan-Shu&rft.date=2010-05-01&rft.volume=89&rft.issue=5&rft.spage=1141&rft.epage=1149&rft.pages=1141-1149&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2009.07.001&rft_dat=%3Cproquest_cross%3E753739131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753739131&rft_id=info:pmid/&rfr_iscdi=true