Loading…
Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler
Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator...
Saved in:
Published in: | Fuel (Guildford) 2010-05, Vol.89 (5), p.1141-1149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23 |
---|---|
cites | |
container_end_page | 1149 |
container_issue | 5 |
container_start_page | 1141 |
container_title | Fuel (Guildford) |
container_volume | 89 |
creator | Shieh, Shyan-Shu Chang, Yi-Hsin Jang, Shi-Shang Ma, Ming-Da Huang, Ta-Sung |
description | Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations. |
doi_str_mv | 10.1016/j.fuel.2009.07.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236109003184</els_id><sourcerecordid>753739131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</originalsourceid><addsrcrecordid>eNp9kEuLFDEUhYMo2I7zB1xlI66qzKNSqQI3MviCARc663A7ucG0qcqYpBt6fv2k7MGlq1wO556c-xHyhrOeMz6-P_T-iLEXjM090z1j_BnZ8UnLTnMln5NdU8ZOyJG_JK9KOTDG9KSGHXn4UaGGUoOFSH_jmZ4gB9hHpLBCPJdQ2uDokhzGbg8FHbVprTlF6lOm9RfSsNzndMIF10qT36S8tDD0PtiAqz1vKtDlGGvotpp0n0LE_Jq88BALXj-9V-Tu86efN1-72-9fvt18vO3sIKbaIWfgR1DTMCnr5oE7bWc1O82Ed05aQI-Kaz8pPUg-IlqL4KxUIGbvrZBX5N0lt9X8c8RSzRKKxRhhxXQsRiup5cwlb05xcdqcSsnozX0OC-Sz4cxsnM3BbAeYjbNh2jSqbentUzyUBtFnWG0o_zaFGFmL32p8uPiw3XoKmE35iwddyGircSn875tHG7uWwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739131</pqid></control><display><type>article</type><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><source>ScienceDirect Freedom Collection</source><creator>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</creator><creatorcontrib>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</creatorcontrib><description>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2009.07.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiler ; Boilers ; Cogeneration ; Combined power plants ; Data mining ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Installations for energy generation and conversion: thermal and electrical energy ; Steel and iron plant ; Thermal efficiency</subject><ispartof>Fuel (Guildford), 2010-05, Vol.89 (5), p.1141-1149</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22607392$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shieh, Shyan-Shu</creatorcontrib><creatorcontrib>Chang, Yi-Hsin</creatorcontrib><creatorcontrib>Jang, Shi-Shang</creatorcontrib><creatorcontrib>Ma, Ming-Da</creatorcontrib><creatorcontrib>Huang, Ta-Sung</creatorcontrib><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><title>Fuel (Guildford)</title><description>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</description><subject>Applied sciences</subject><subject>Boiler</subject><subject>Boilers</subject><subject>Cogeneration</subject><subject>Combined power plants</subject><subject>Data mining</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Steel and iron plant</subject><subject>Thermal efficiency</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEuLFDEUhYMo2I7zB1xlI66qzKNSqQI3MviCARc663A7ucG0qcqYpBt6fv2k7MGlq1wO556c-xHyhrOeMz6-P_T-iLEXjM090z1j_BnZ8UnLTnMln5NdU8ZOyJG_JK9KOTDG9KSGHXn4UaGGUoOFSH_jmZ4gB9hHpLBCPJdQ2uDokhzGbg8FHbVprTlF6lOm9RfSsNzndMIF10qT36S8tDD0PtiAqz1vKtDlGGvotpp0n0LE_Jq88BALXj-9V-Tu86efN1-72-9fvt18vO3sIKbaIWfgR1DTMCnr5oE7bWc1O82Ed05aQI-Kaz8pPUg-IlqL4KxUIGbvrZBX5N0lt9X8c8RSzRKKxRhhxXQsRiup5cwlb05xcdqcSsnozX0OC-Sz4cxsnM3BbAeYjbNh2jSqbentUzyUBtFnWG0o_zaFGFmL32p8uPiw3XoKmE35iwddyGircSn875tHG7uWwQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Shieh, Shyan-Shu</creator><creator>Chang, Yi-Hsin</creator><creator>Jang, Shi-Shang</creator><creator>Ma, Ming-Da</creator><creator>Huang, Ta-Sung</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</title><author>Shieh, Shyan-Shu ; Chang, Yi-Hsin ; Jang, Shi-Shang ; Ma, Ming-Da ; Huang, Ta-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Boiler</topic><topic>Boilers</topic><topic>Cogeneration</topic><topic>Combined power plants</topic><topic>Data mining</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Steel and iron plant</topic><topic>Thermal efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shieh, Shyan-Shu</creatorcontrib><creatorcontrib>Chang, Yi-Hsin</creatorcontrib><creatorcontrib>Jang, Shi-Shang</creatorcontrib><creatorcontrib>Ma, Ming-Da</creatorcontrib><creatorcontrib>Huang, Ta-Sung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shieh, Shyan-Shu</au><au>Chang, Yi-Hsin</au><au>Jang, Shi-Shang</au><au>Ma, Ming-Da</au><au>Huang, Ta-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler</atitle><jtitle>Fuel (Guildford)</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>89</volume><issue>5</issue><spage>1141</spage><epage>1149</epage><pages>1141-1149</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2009.07.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2010-05, Vol.89 (5), p.1141-1149 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_miscellaneous_753739131 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Boiler Boilers Cogeneration Combined power plants Data mining Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Installations for energy generation and conversion: thermal and electrical energy Steel and iron plant Thermal efficiency |
title | Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20key%20variable%20analysis%20and%20model-based%20control%20for%20the%20improvement%20of%20thermal%20efficiency%20of%20a%20multi-fuel%20boiler&rft.jtitle=Fuel%20(Guildford)&rft.au=Shieh,%20Shyan-Shu&rft.date=2010-05-01&rft.volume=89&rft.issue=5&rft.spage=1141&rft.epage=1149&rft.pages=1141-1149&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2009.07.001&rft_dat=%3Cproquest_cross%3E753739131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e10af6a58485cd941d7c959d702fdd3caefe517f8574316eecceadc35a29ffc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753739131&rft_id=info:pmid/&rfr_iscdi=true |