Loading…
Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential
We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and...
Saved in:
Published in: | Applied mathematics and computation 2010-03, Vol.216 (2), p.545-555 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383 |
container_end_page | 555 |
container_issue | 2 |
container_start_page | 545 |
container_title | Applied mathematics and computation |
container_volume | 216 |
creator | Ikhdair, Sameer M. Sever, Ramazan |
description | We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the
(
3
+
1
)
-dimensions for any arbitrary spin-orbit
κ
state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases
κ
=
±
1
(
l
=
l
˜
=
0
,i.e
.
,
s
-wave
)
, the constant mass and the non-relativistic limits are briefly investigated. |
doi_str_mv | 10.1016/j.amc.2010.01.072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310000962</els_id><sourcerecordid>753739895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvLB-DmC-KUZWwnTixOaPkrVeLQ9mzNOhPVSxKntgPaA98db3fFkdPoSb_3ZuYx9kbAVoDQ7w9bnNxWQtEgttDKZ2wjulZVja7Nc7YBMLpSAOole5XSAQBaLeoN-3MbxjX7MCceBp4fiKcFs8dxPFY9LTT3NGc-YUr8k4_oOD2ueOL5b58fLgY_c5x7viRa-_Ak03GaKMcjH0J8gnZhHcO0r0b_k_gSckktS67ZiwHHRK8v84rdf_l8t_tW3fz4-n338aZyqjG5ahvoazU0dYvYCJTGuVpDTbJze9Q1EbWuk6g0gUQgt5egmuLRzhijVaeu2Ltz7hLD40op28knR-OIM4U12bZRrTKdaQopzqSLIaVIg12inzAerQB7atoebGnanpq2IGxpunjeXtIxORyHiLPz6Z9RykZDB6crPpw5Kq_-8hRtcp5mR72P5LLtg__Plr9qrZWK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739895</pqid></control><display><type>article</type><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Ikhdair, Sameer M. ; Sever, Ramazan</creator><creatorcontrib>Ikhdair, Sameer M. ; Sever, Ramazan</creatorcontrib><description>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the
(
3
+
1
)
-dimensions for any arbitrary spin-orbit
κ
state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases
κ
=
±
1
(
l
=
l
˜
=
0
,i.e
.
,
s
-wave
)
, the constant mass and the non-relativistic limits are briefly investigated.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.01.072</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Bound states ; Coulomb potential ; Dirac equation ; Eigenvalues ; Energy of formation ; Exact sciences and technology ; Exact solutions ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Nikiforov–Uvarov method ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Pseudospin symmetry ; Sciences and techniques of general use ; Spatially-dependent mass ; Spin symmetry ; Symmetry</subject><ispartof>Applied mathematics and computation, 2010-03, Vol.216 (2), p.545-555</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</citedby><cites>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310000962$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22560808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikhdair, Sameer M.</creatorcontrib><creatorcontrib>Sever, Ramazan</creatorcontrib><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><title>Applied mathematics and computation</title><description>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the
(
3
+
1
)
-dimensions for any arbitrary spin-orbit
κ
state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases
κ
=
±
1
(
l
=
l
˜
=
0
,i.e
.
,
s
-wave
)
, the constant mass and the non-relativistic limits are briefly investigated.</description><subject>Algebra</subject><subject>Bound states</subject><subject>Coulomb potential</subject><subject>Dirac equation</subject><subject>Eigenvalues</subject><subject>Energy of formation</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nikiforov–Uvarov method</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Pseudospin symmetry</subject><subject>Sciences and techniques of general use</subject><subject>Spatially-dependent mass</subject><subject>Spin symmetry</subject><subject>Symmetry</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvLB-DmC-KUZWwnTixOaPkrVeLQ9mzNOhPVSxKntgPaA98db3fFkdPoSb_3ZuYx9kbAVoDQ7w9bnNxWQtEgttDKZ2wjulZVja7Nc7YBMLpSAOole5XSAQBaLeoN-3MbxjX7MCceBp4fiKcFs8dxPFY9LTT3NGc-YUr8k4_oOD2ueOL5b58fLgY_c5x7viRa-_Ak03GaKMcjH0J8gnZhHcO0r0b_k_gSckktS67ZiwHHRK8v84rdf_l8t_tW3fz4-n338aZyqjG5ahvoazU0dYvYCJTGuVpDTbJze9Q1EbWuk6g0gUQgt5egmuLRzhijVaeu2Ltz7hLD40op28knR-OIM4U12bZRrTKdaQopzqSLIaVIg12inzAerQB7atoebGnanpq2IGxpunjeXtIxORyHiLPz6Z9RykZDB6crPpw5Kq_-8hRtcp5mR72P5LLtg__Plr9qrZWK</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Ikhdair, Sameer M.</creator><creator>Sever, Ramazan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100315</creationdate><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><author>Ikhdair, Sameer M. ; Sever, Ramazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Bound states</topic><topic>Coulomb potential</topic><topic>Dirac equation</topic><topic>Eigenvalues</topic><topic>Energy of formation</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nikiforov–Uvarov method</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Pseudospin symmetry</topic><topic>Sciences and techniques of general use</topic><topic>Spatially-dependent mass</topic><topic>Spin symmetry</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikhdair, Sameer M.</creatorcontrib><creatorcontrib>Sever, Ramazan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikhdair, Sameer M.</au><au>Sever, Ramazan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-03-15</date><risdate>2010</risdate><volume>216</volume><issue>2</issue><spage>545</spage><epage>555</epage><pages>545-555</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the
(
3
+
1
)
-dimensions for any arbitrary spin-orbit
κ
state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases
κ
=
±
1
(
l
=
l
˜
=
0
,i.e
.
,
s
-wave
)
, the constant mass and the non-relativistic limits are briefly investigated.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.01.072</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-03, Vol.216 (2), p.545-555 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_753739895 |
source | ScienceDirect Freedom Collection 2022-2024; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Algebra Bound states Coulomb potential Dirac equation Eigenvalues Energy of formation Exact sciences and technology Exact solutions Linear and multilinear algebra, matrix theory Mathematical analysis Mathematical models Mathematics Nikiforov–Uvarov method Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Pseudospin symmetry Sciences and techniques of general use Spatially-dependent mass Spin symmetry Symmetry |
title | Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20of%20the%20spatially-dependent%20mass%20Dirac%20equation%20with%20the%20spin%20and%20pseudospin%20symmetry%20for%20the%20Coulomb-like%20potential&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Ikhdair,%20Sameer%20M.&rft.date=2010-03-15&rft.volume=216&rft.issue=2&rft.spage=545&rft.epage=555&rft.pages=545-555&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.01.072&rft_dat=%3Cproquest_cross%3E753739895%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753739895&rft_id=info:pmid/&rfr_iscdi=true |