Loading…

Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential

We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2010-03, Vol.216 (2), p.545-555
Main Authors: Ikhdair, Sameer M., Sever, Ramazan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383
cites cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383
container_end_page 555
container_issue 2
container_start_page 545
container_title Applied mathematics and computation
container_volume 216
creator Ikhdair, Sameer M.
Sever, Ramazan
description We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases κ = ± 1 ( l = l ˜ = 0 ,i.e . , s -wave ) , the constant mass and the non-relativistic limits are briefly investigated.
doi_str_mv 10.1016/j.amc.2010.01.072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753739895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310000962</els_id><sourcerecordid>753739895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvLB-DmC-KUZWwnTixOaPkrVeLQ9mzNOhPVSxKntgPaA98db3fFkdPoSb_3ZuYx9kbAVoDQ7w9bnNxWQtEgttDKZ2wjulZVja7Nc7YBMLpSAOole5XSAQBaLeoN-3MbxjX7MCceBp4fiKcFs8dxPFY9LTT3NGc-YUr8k4_oOD2ueOL5b58fLgY_c5x7viRa-_Ak03GaKMcjH0J8gnZhHcO0r0b_k_gSckktS67ZiwHHRK8v84rdf_l8t_tW3fz4-n338aZyqjG5ahvoazU0dYvYCJTGuVpDTbJze9Q1EbWuk6g0gUQgt5egmuLRzhijVaeu2Ltz7hLD40op28knR-OIM4U12bZRrTKdaQopzqSLIaVIg12inzAerQB7atoebGnanpq2IGxpunjeXtIxORyHiLPz6Z9RykZDB6crPpw5Kq_-8hRtcp5mR72P5LLtg__Plr9qrZWK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753739895</pqid></control><display><type>article</type><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Ikhdair, Sameer M. ; Sever, Ramazan</creator><creatorcontrib>Ikhdair, Sameer M. ; Sever, Ramazan</creatorcontrib><description>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases κ = ± 1 ( l = l ˜ = 0 ,i.e . , s -wave ) , the constant mass and the non-relativistic limits are briefly investigated.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.01.072</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Bound states ; Coulomb potential ; Dirac equation ; Eigenvalues ; Energy of formation ; Exact sciences and technology ; Exact solutions ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Nikiforov–Uvarov method ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Pseudospin symmetry ; Sciences and techniques of general use ; Spatially-dependent mass ; Spin symmetry ; Symmetry</subject><ispartof>Applied mathematics and computation, 2010-03, Vol.216 (2), p.545-555</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</citedby><cites>FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310000962$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22560808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikhdair, Sameer M.</creatorcontrib><creatorcontrib>Sever, Ramazan</creatorcontrib><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><title>Applied mathematics and computation</title><description>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases κ = ± 1 ( l = l ˜ = 0 ,i.e . , s -wave ) , the constant mass and the non-relativistic limits are briefly investigated.</description><subject>Algebra</subject><subject>Bound states</subject><subject>Coulomb potential</subject><subject>Dirac equation</subject><subject>Eigenvalues</subject><subject>Energy of formation</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nikiforov–Uvarov method</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Pseudospin symmetry</subject><subject>Sciences and techniques of general use</subject><subject>Spatially-dependent mass</subject><subject>Spin symmetry</subject><subject>Symmetry</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvLB-DmC-KUZWwnTixOaPkrVeLQ9mzNOhPVSxKntgPaA98db3fFkdPoSb_3ZuYx9kbAVoDQ7w9bnNxWQtEgttDKZ2wjulZVja7Nc7YBMLpSAOole5XSAQBaLeoN-3MbxjX7MCceBp4fiKcFs8dxPFY9LTT3NGc-YUr8k4_oOD2ueOL5b58fLgY_c5x7viRa-_Ak03GaKMcjH0J8gnZhHcO0r0b_k_gSckktS67ZiwHHRK8v84rdf_l8t_tW3fz4-n338aZyqjG5ahvoazU0dYvYCJTGuVpDTbJze9Q1EbWuk6g0gUQgt5egmuLRzhijVaeu2Ltz7hLD40op28knR-OIM4U12bZRrTKdaQopzqSLIaVIg12inzAerQB7atoebGnanpq2IGxpunjeXtIxORyHiLPz6Z9RykZDB6crPpw5Kq_-8hRtcp5mR72P5LLtg__Plr9qrZWK</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Ikhdair, Sameer M.</creator><creator>Sever, Ramazan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100315</creationdate><title>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</title><author>Ikhdair, Sameer M. ; Sever, Ramazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Bound states</topic><topic>Coulomb potential</topic><topic>Dirac equation</topic><topic>Eigenvalues</topic><topic>Energy of formation</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nikiforov–Uvarov method</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Pseudospin symmetry</topic><topic>Sciences and techniques of general use</topic><topic>Spatially-dependent mass</topic><topic>Spin symmetry</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikhdair, Sameer M.</creatorcontrib><creatorcontrib>Sever, Ramazan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikhdair, Sameer M.</au><au>Sever, Ramazan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-03-15</date><risdate>2010</risdate><volume>216</volume><issue>2</issue><spage>545</spage><epage>555</epage><pages>545-555</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We study the effect of spatially-dependent mass function over the solution of the Dirac equation with the Coulomb potential in the ( 3 + 1 ) -dimensions for any arbitrary spin-orbit κ state. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov–Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases κ = ± 1 ( l = l ˜ = 0 ,i.e . , s -wave ) , the constant mass and the non-relativistic limits are briefly investigated.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.01.072</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-03, Vol.216 (2), p.545-555
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_753739895
source ScienceDirect Freedom Collection 2022-2024; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Algebra
Bound states
Coulomb potential
Dirac equation
Eigenvalues
Energy of formation
Exact sciences and technology
Exact solutions
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematical models
Mathematics
Nikiforov–Uvarov method
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Pseudospin symmetry
Sciences and techniques of general use
Spatially-dependent mass
Spin symmetry
Symmetry
title Solutions of the spatially-dependent mass Dirac equation with the spin and pseudospin symmetry for the Coulomb-like potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20of%20the%20spatially-dependent%20mass%20Dirac%20equation%20with%20the%20spin%20and%20pseudospin%20symmetry%20for%20the%20Coulomb-like%20potential&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Ikhdair,%20Sameer%20M.&rft.date=2010-03-15&rft.volume=216&rft.issue=2&rft.spage=545&rft.epage=555&rft.pages=545-555&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.01.072&rft_dat=%3Cproquest_cross%3E753739895%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-750d43f547aa51a29cc4604e28cba64eee7c82a36e02a0ecb203550d6c9996383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753739895&rft_id=info:pmid/&rfr_iscdi=true