Loading…

Chemical synthesis of FePt nanoparticles with high alternate current magnetic susceptibility for biomedical applications

The present paper describes ordered alloy FePt nanoparticles with high magnetic susceptibility to alternate current (ac) fields at around room temperature for biomedical applications such as magnetic sensing devices for diagnostics and magnetic hyperthermia for cancer therapy. Since ac magnetic susc...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2009-10, Vol.54 (25), p.5969-5972
Main Authors: Kitamoto, Yoshitaka, He, Jing-Sha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper describes ordered alloy FePt nanoparticles with high magnetic susceptibility to alternate current (ac) fields at around room temperature for biomedical applications such as magnetic sensing devices for diagnostics and magnetic hyperthermia for cancer therapy. Since ac magnetic susceptibility takes the maximum value at a temperature near the blocking temperature of magnetic nanoparticles, the blocking temperature of the FePt nanoparticles is required to be adjusted at around room temperature to improve biomedical performances. Ordered alloy FePt has much higher magnetic anisotropy than iron oxides, and it can be the best candidate in the case of their particle size less than 10 nm. The ordered alloy FePt nanoparticles are synthesized by reduction of Fe and Pt organo-metallic compounds with tetraethylene glycol using poly( N-vinyl-2-pyrrolidone) (PVP) as a protective agent. PVP is a water-soluble polymer, and is proper to obtain dispersion into water. Influences of reaction temperature on crystallite size (particle size) and blocking temperature and the relationship between the blocking temperature and the value of ac magnetic susceptibility at around room temperature are investigated. Furthermore, PVP concentration at the synthesis to obtain well dispersed nanoparticle-suspension is examined.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2009.02.092