Loading…
A collaborative Design for Usability approach supported by Virtual Reality and a Multi-Agent System embedded in a PLM environment
This paper details a collaborative workstation design approach integrating knowledge based on engineering process, using a Multi-Agent System (MAS) on a Virtual Reality (VR) platform. The MAS supports R&D teams to extract and re-use engineering knowledge so as to improve their efficiency in deve...
Saved in:
Published in: | Computer aided design 2010-05, Vol.42 (5), p.402-413 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper details a collaborative workstation design approach integrating knowledge based on engineering process, using a Multi-Agent System (MAS) on a Virtual Reality (VR) platform. The MAS supports R&D teams to extract and re-use engineering knowledge so as to improve their efficiency in developing new products. Our research targets the development of a knowledge engineering system integrated into a PLM–Product Life cycle Management–environment linked with virtual reality tools. A PLM is a strategic business approach with a consistent set of methodologies and software solutions. It is meant to promote collaborative creation, management, delivery and proper use of this life cycle definition and information product in multinational companies. This system is used by engineers to carry out projects in a collective way while conveying a defined process. The MAS allows capitalization, and to annotate knowledge according to the actions of the designers inside a PLM environment. Then, this knowledge is used by VR tools to analyze various aspects of the virtual prototype such as manufacturing, maintenance, reliability or ergonomics. Consequently, we use expert knowledge to pilot the design process of a virtual prototype inside a three-dimensional immersive virtual reality platform. In this context, our paper describes our knowledge management approach applied to improve ergonomics and collaborative design in industrial areas. |
---|---|
ISSN: | 0010-4485 1879-2685 |
DOI: | 10.1016/j.cad.2009.02.009 |