Loading…

On database query languages for K-relations

The relational model has recently been extended to so-called K -relations in which tuples are assigned a unique value in a semiring K . A query language, denoted by RA K + , similar to the classical positive relational algebra, allows for the querying of K -relations. In this paper, we define more e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied logic 2010-06, Vol.8 (2), p.173-185
Main Authors: Geerts, Floris, Poggi, Antonella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3
cites cdi_FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3
container_end_page 185
container_issue 2
container_start_page 173
container_title Journal of applied logic
container_volume 8
creator Geerts, Floris
Poggi, Antonella
description The relational model has recently been extended to so-called K -relations in which tuples are assigned a unique value in a semiring K . A query language, denoted by RA K + , similar to the classical positive relational algebra, allows for the querying of K -relations. In this paper, we define more expressive query languages for K -relations that extend RA K + with the difference and constant annotations operations on annotated tuples. The latter are natural extensions of the duplicate elimination operator of the relational algebra on bags. We investigate conditions on semirings under which these operations can be added to RA K + in a natural way, and establish basic properties of the resulting query languages. Moreover, we show how the provenance semiring of Green et al. can be extended to record provenance of data in the presence of difference and constant annotations. Finally, we investigate the completeness of RA K + and extensions thereof in the sense of Bancilhon and Paredaens.
doi_str_mv 10.1016/j.jal.2009.09.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753748974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S157086830900041X</els_id><sourcerecordid>753748974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG-9eZDWSZNNUjzJ4qq4sBc9hySdLinddk26wv57U1Y8Cg9mDu8b3jxCbikUFKh4aIvWdEUJUBWTgJ6RGV1IyJWo6PnfrtgluYqxBeAlF9WM3G_6rDajsSZi9nXAcMw6028PZosxa4aQvecBOzP6oY_X5KIxXcSb3zknn6vnj-Vrvt68vC2f1rljshzzWsmybKh0XCquEChYBZxzdFZYySkVRgkmAYAJq6QyIhGWNozJpmLOsjm5O93dhyFFiqPe-eiwS8FwOEQtF0xyVUmenPTkdGGIMWCj98HvTDhqCnrqRbc69aKnXvQkoIl5PDGYXvj2GHR0HnuHtQ_oRl0P_h_6BwZzaJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753748974</pqid></control><display><type>article</type><title>On database query languages for K-relations</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Geerts, Floris ; Poggi, Antonella</creator><creatorcontrib>Geerts, Floris ; Poggi, Antonella</creatorcontrib><description>The relational model has recently been extended to so-called K -relations in which tuples are assigned a unique value in a semiring K . A query language, denoted by RA K + , similar to the classical positive relational algebra, allows for the querying of K -relations. In this paper, we define more expressive query languages for K -relations that extend RA K + with the difference and constant annotations operations on annotated tuples. The latter are natural extensions of the duplicate elimination operator of the relational algebra on bags. We investigate conditions on semirings under which these operations can be added to RA K + in a natural way, and establish basic properties of the resulting query languages. Moreover, we show how the provenance semiring of Green et al. can be extended to record provenance of data in the presence of difference and constant annotations. Finally, we investigate the completeness of RA K + and extensions thereof in the sense of Bancilhon and Paredaens.</description><identifier>ISSN: 1570-8683</identifier><identifier>EISSN: 1570-8691</identifier><identifier>DOI: 10.1016/j.jal.2009.09.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annotations ; Bags ; Language completeness ; Mathematical analysis ; Mathematical models ; Provenance ; Query language ; Query processing ; Relational algebra ; Relational model ; Reproduction</subject><ispartof>Journal of applied logic, 2010-06, Vol.8 (2), p.173-185</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3</citedby><cites>FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Geerts, Floris</creatorcontrib><creatorcontrib>Poggi, Antonella</creatorcontrib><title>On database query languages for K-relations</title><title>Journal of applied logic</title><description>The relational model has recently been extended to so-called K -relations in which tuples are assigned a unique value in a semiring K . A query language, denoted by RA K + , similar to the classical positive relational algebra, allows for the querying of K -relations. In this paper, we define more expressive query languages for K -relations that extend RA K + with the difference and constant annotations operations on annotated tuples. The latter are natural extensions of the duplicate elimination operator of the relational algebra on bags. We investigate conditions on semirings under which these operations can be added to RA K + in a natural way, and establish basic properties of the resulting query languages. Moreover, we show how the provenance semiring of Green et al. can be extended to record provenance of data in the presence of difference and constant annotations. Finally, we investigate the completeness of RA K + and extensions thereof in the sense of Bancilhon and Paredaens.</description><subject>Annotations</subject><subject>Bags</subject><subject>Language completeness</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Provenance</subject><subject>Query language</subject><subject>Query processing</subject><subject>Relational algebra</subject><subject>Relational model</subject><subject>Reproduction</subject><issn>1570-8683</issn><issn>1570-8691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG-9eZDWSZNNUjzJ4qq4sBc9hySdLinddk26wv57U1Y8Cg9mDu8b3jxCbikUFKh4aIvWdEUJUBWTgJ6RGV1IyJWo6PnfrtgluYqxBeAlF9WM3G_6rDajsSZi9nXAcMw6028PZosxa4aQvecBOzP6oY_X5KIxXcSb3zknn6vnj-Vrvt68vC2f1rljshzzWsmybKh0XCquEChYBZxzdFZYySkVRgkmAYAJq6QyIhGWNozJpmLOsjm5O93dhyFFiqPe-eiwS8FwOEQtF0xyVUmenPTkdGGIMWCj98HvTDhqCnrqRbc69aKnXvQkoIl5PDGYXvj2GHR0HnuHtQ_oRl0P_h_6BwZzaJM</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Geerts, Floris</creator><creator>Poggi, Antonella</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>On database query languages for K-relations</title><author>Geerts, Floris ; Poggi, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Annotations</topic><topic>Bags</topic><topic>Language completeness</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Provenance</topic><topic>Query language</topic><topic>Query processing</topic><topic>Relational algebra</topic><topic>Relational model</topic><topic>Reproduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Floris</creatorcontrib><creatorcontrib>Poggi, Antonella</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Floris</au><au>Poggi, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On database query languages for K-relations</atitle><jtitle>Journal of applied logic</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>8</volume><issue>2</issue><spage>173</spage><epage>185</epage><pages>173-185</pages><issn>1570-8683</issn><eissn>1570-8691</eissn><abstract>The relational model has recently been extended to so-called K -relations in which tuples are assigned a unique value in a semiring K . A query language, denoted by RA K + , similar to the classical positive relational algebra, allows for the querying of K -relations. In this paper, we define more expressive query languages for K -relations that extend RA K + with the difference and constant annotations operations on annotated tuples. The latter are natural extensions of the duplicate elimination operator of the relational algebra on bags. We investigate conditions on semirings under which these operations can be added to RA K + in a natural way, and establish basic properties of the resulting query languages. Moreover, we show how the provenance semiring of Green et al. can be extended to record provenance of data in the presence of difference and constant annotations. Finally, we investigate the completeness of RA K + and extensions thereof in the sense of Bancilhon and Paredaens.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jal.2009.09.001</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-8683
ispartof Journal of applied logic, 2010-06, Vol.8 (2), p.173-185
issn 1570-8683
1570-8691
language eng
recordid cdi_proquest_miscellaneous_753748974
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Annotations
Bags
Language completeness
Mathematical analysis
Mathematical models
Provenance
Query language
Query processing
Relational algebra
Relational model
Reproduction
title On database query languages for K-relations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20database%20query%20languages%20for%20K-relations&rft.jtitle=Journal%20of%20applied%20logic&rft.au=Geerts,%20Floris&rft.date=2010-06-01&rft.volume=8&rft.issue=2&rft.spage=173&rft.epage=185&rft.pages=173-185&rft.issn=1570-8683&rft.eissn=1570-8691&rft_id=info:doi/10.1016/j.jal.2009.09.001&rft_dat=%3Cproquest_cross%3E753748974%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-d8722f17c47848e010b80444ecb6b74116a863700036b878a6d87b1f337f93cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753748974&rft_id=info:pmid/&rfr_iscdi=true