Loading…

Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections

Finite element analyses of plastic failure in the heat-affected zone of a generic welded aluminium connection are presented. The analyses include process history through multi-scale modelling. The heterogeneous material properties of the heat-affected zone are calculated using welding simulations to...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2010-05, Vol.88 (9), p.519-528
Main Authors: Dørum, Cato, Lademo, Odd-Geir, Myhr, Ole Runar, Berstad, Torodd, Hopperstad, Odd Sture
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263
cites cdi_FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263
container_end_page 528
container_issue 9
container_start_page 519
container_title Computers & structures
container_volume 88
creator Dørum, Cato
Lademo, Odd-Geir
Myhr, Ole Runar
Berstad, Torodd
Hopperstad, Odd Sture
description Finite element analyses of plastic failure in the heat-affected zone of a generic welded aluminium connection are presented. The analyses include process history through multi-scale modelling. The heterogeneous material properties of the heat-affected zone are calculated using welding simulations to obtain the temperature history as input to coupled precipitation, yield strength and work-hardening models. Thermal history-dependent material parameters are mapped as field variables onto the finite element model to account for their spatial variation inside the heat-affected zone. The welded connection is modelled using shell elements, solid elements and cohesive-zone elements. Convergence studies show that very small elements are needed (much less than the plate thickness) to resolve the large strain gradients within the HAZ and to obtain converged solutions. Non-local regularization is vital in shell element analyses to obtain accurate estimates of the ductility of the welded connection. Two methods for estimating the ductility in the welded aluminium connection with coarser meshes are proposed.
doi_str_mv 10.1016/j.compstruc.2010.01.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753749922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794910000040</els_id><sourcerecordid>753749922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1EJZYtz4AvVU9Z7LEdJ8eqooBUiQucjeOMhVeOvdgJqDw9Xm3VK6fRjL6Z0f8R8p6zA2e8_3A8uLyc6lo2dwDWpowfGBOvyI4PeuwApHhNdoxJ1elRjm_I21qPjLFeMrYjPx5CCitSjLhgWqlNNj7VUGn29BRtXYOj3oa4FaQh0Z9o1856j27Fmf7NCc_gH4xza23clnZtW6jLKTUk5FSvyZW3seK757on3x8-frv_3D1-_fTl_u6xc0LrtZutdFJqOyghlJoUMgAP3gP2PYyjUKCckr2V4zQBzFx4LeeJ68HpASboxZ7cXu6eSv61YV3NEqrDGG3CvFWjldByHAEaqS-kK7nWgt6cSlhseTKcmbNSczQvSs1ZqWHcNKVt8-b5h63ORl9scqG-rAP0Qy9bgj25u3DYAv8OWEx1AZPDOZSmxcw5_PfXP2oOkdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753749922</pqid></control><display><type>article</type><title>Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections</title><source>ScienceDirect Freedom Collection</source><creator>Dørum, Cato ; Lademo, Odd-Geir ; Myhr, Ole Runar ; Berstad, Torodd ; Hopperstad, Odd Sture</creator><creatorcontrib>Dørum, Cato ; Lademo, Odd-Geir ; Myhr, Ole Runar ; Berstad, Torodd ; Hopperstad, Odd Sture</creatorcontrib><description>Finite element analyses of plastic failure in the heat-affected zone of a generic welded aluminium connection are presented. The analyses include process history through multi-scale modelling. The heterogeneous material properties of the heat-affected zone are calculated using welding simulations to obtain the temperature history as input to coupled precipitation, yield strength and work-hardening models. Thermal history-dependent material parameters are mapped as field variables onto the finite element model to account for their spatial variation inside the heat-affected zone. The welded connection is modelled using shell elements, solid elements and cohesive-zone elements. Convergence studies show that very small elements are needed (much less than the plate thickness) to resolve the large strain gradients within the HAZ and to obtain converged solutions. Non-local regularization is vital in shell element analyses to obtain accurate estimates of the ductility of the welded connection. Two methods for estimating the ductility in the welded aluminium connection with coarser meshes are proposed.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2010.01.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminium ; Aluminum ; Computational techniques ; Exact sciences and technology ; Failure ; Finite element method ; Finite element simulation ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Heat affected zone ; Inelasticity (thermoplasticity, viscoplasticity...) ; Joints ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Microstructure-based modelling ; Physics ; Plastic failure ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computers &amp; structures, 2010-05, Vol.88 (9), p.519-528</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263</citedby><cites>FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22686485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dørum, Cato</creatorcontrib><creatorcontrib>Lademo, Odd-Geir</creatorcontrib><creatorcontrib>Myhr, Ole Runar</creatorcontrib><creatorcontrib>Berstad, Torodd</creatorcontrib><creatorcontrib>Hopperstad, Odd Sture</creatorcontrib><title>Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections</title><title>Computers &amp; structures</title><description>Finite element analyses of plastic failure in the heat-affected zone of a generic welded aluminium connection are presented. The analyses include process history through multi-scale modelling. The heterogeneous material properties of the heat-affected zone are calculated using welding simulations to obtain the temperature history as input to coupled precipitation, yield strength and work-hardening models. Thermal history-dependent material parameters are mapped as field variables onto the finite element model to account for their spatial variation inside the heat-affected zone. The welded connection is modelled using shell elements, solid elements and cohesive-zone elements. Convergence studies show that very small elements are needed (much less than the plate thickness) to resolve the large strain gradients within the HAZ and to obtain converged solutions. Non-local regularization is vital in shell element analyses to obtain accurate estimates of the ductility of the welded connection. Two methods for estimating the ductility in the welded aluminium connection with coarser meshes are proposed.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Finite element method</subject><subject>Finite element simulation</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat affected zone</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Joints</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Microstructure-based modelling</subject><subject>Physics</subject><subject>Plastic failure</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1EJZYtz4AvVU9Z7LEdJ8eqooBUiQucjeOMhVeOvdgJqDw9Xm3VK6fRjL6Z0f8R8p6zA2e8_3A8uLyc6lo2dwDWpowfGBOvyI4PeuwApHhNdoxJ1elRjm_I21qPjLFeMrYjPx5CCitSjLhgWqlNNj7VUGn29BRtXYOj3oa4FaQh0Z9o1856j27Fmf7NCc_gH4xza23clnZtW6jLKTUk5FSvyZW3seK757on3x8-frv_3D1-_fTl_u6xc0LrtZutdFJqOyghlJoUMgAP3gP2PYyjUKCckr2V4zQBzFx4LeeJ68HpASboxZ7cXu6eSv61YV3NEqrDGG3CvFWjldByHAEaqS-kK7nWgt6cSlhseTKcmbNSczQvSs1ZqWHcNKVt8-b5h63ORl9scqG-rAP0Qy9bgj25u3DYAv8OWEx1AZPDOZSmxcw5_PfXP2oOkdQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Dørum, Cato</creator><creator>Lademo, Odd-Geir</creator><creator>Myhr, Ole Runar</creator><creator>Berstad, Torodd</creator><creator>Hopperstad, Odd Sture</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections</title><author>Dørum, Cato ; Lademo, Odd-Geir ; Myhr, Ole Runar ; Berstad, Torodd ; Hopperstad, Odd Sture</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Finite element method</topic><topic>Finite element simulation</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat affected zone</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Joints</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Microstructure-based modelling</topic><topic>Physics</topic><topic>Plastic failure</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dørum, Cato</creatorcontrib><creatorcontrib>Lademo, Odd-Geir</creatorcontrib><creatorcontrib>Myhr, Ole Runar</creatorcontrib><creatorcontrib>Berstad, Torodd</creatorcontrib><creatorcontrib>Hopperstad, Odd Sture</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dørum, Cato</au><au>Lademo, Odd-Geir</au><au>Myhr, Ole Runar</au><au>Berstad, Torodd</au><au>Hopperstad, Odd Sture</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections</atitle><jtitle>Computers &amp; structures</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>88</volume><issue>9</issue><spage>519</spage><epage>528</epage><pages>519-528</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>Finite element analyses of plastic failure in the heat-affected zone of a generic welded aluminium connection are presented. The analyses include process history through multi-scale modelling. The heterogeneous material properties of the heat-affected zone are calculated using welding simulations to obtain the temperature history as input to coupled precipitation, yield strength and work-hardening models. Thermal history-dependent material parameters are mapped as field variables onto the finite element model to account for their spatial variation inside the heat-affected zone. The welded connection is modelled using shell elements, solid elements and cohesive-zone elements. Convergence studies show that very small elements are needed (much less than the plate thickness) to resolve the large strain gradients within the HAZ and to obtain converged solutions. Non-local regularization is vital in shell element analyses to obtain accurate estimates of the ductility of the welded connection. Two methods for estimating the ductility in the welded aluminium connection with coarser meshes are proposed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2010.01.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2010-05, Vol.88 (9), p.519-528
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_753749922
source ScienceDirect Freedom Collection
subjects Aluminium
Aluminum
Computational techniques
Exact sciences and technology
Failure
Finite element method
Finite element simulation
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Heat affected zone
Inelasticity (thermoplasticity, viscoplasticity...)
Joints
Mathematical analysis
Mathematical methods in physics
Mathematical models
Microstructure-based modelling
Physics
Plastic failure
Solid mechanics
Structural and continuum mechanics
title Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20of%20plastic%20failure%20in%20heat-affected%20zone%20of%20welded%20aluminium%20connections&rft.jtitle=Computers%20&%20structures&rft.au=D%C3%B8rum,%20Cato&rft.date=2010-05-01&rft.volume=88&rft.issue=9&rft.spage=519&rft.epage=528&rft.pages=519-528&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2010.01.003&rft_dat=%3Cproquest_cross%3E753749922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-da4c447a853355b5e022f2ff2e662993525c546a49bb22d13f74db178c782b263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753749922&rft_id=info:pmid/&rfr_iscdi=true