Loading…

Diamond detectors for hadron physics research

The application of diamond for the detection of charged particles in atomic, nuclear and high-energy physics experiments is described. We compare the properties of three undoped diamond types, all of them produced by Chemical Vapor Deposition (CVD), in particular homoepitaxial single-crystal CVD Dia...

Full description

Saved in:
Bibliographic Details
Published in:Diamond and related materials 2010-05, Vol.19 (5), p.358-367
Main Authors: Berdermann, E., Pomorski, M., de Boer, W., Ciobanu, M., Dunst, S., Grah, C., Kiš, M., Koenig, W., Lange, W., Lohmann, W., Lovrinčić, R., Moritz, P., Morse, J., Mueller, S., Pucci, A., Schreck, M., Rahman, S., Träger, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of diamond for the detection of charged particles in atomic, nuclear and high-energy physics experiments is described. We compare the properties of three undoped diamond types, all of them produced by Chemical Vapor Deposition (CVD), in particular homoepitaxial single-crystal CVD Diamond (scCVDD), polycrystalline CVD Diamond (pcCVDD) grown on silicon, and CVD Diamond on Iridium (DoI) grown on the multi-layer substrate Ir/YSZ/Si001. The characteristics of the transient current (TC) signals generated from 241Am-α-particles in the samples are exploited to evaluate the potential of the diamond crystals for particle timing and spectroscopy applications. The TC technique (TCT) results are correlated to the dark conductivity and the structural defects of the bulk materials as well as to the morphology and roughness of the diamond surfaces. The deterioration of the sensors performance after heavy irradiations with 26 MeV protons, 20 MeV neutrons, and 10 MeV electrons is discussed by means of charge-collection efficiency results, TC technique, and optical absorption spectroscopy (OAS). The important role of the diamond signal processing is underlined, which influences both the quality of the CVDD characterization data as well as the in-beam performance of the diamond sensors.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2009.11.019