Loading…

Interstitial diffusion under conditions of trapping of interstitial impurity atoms

The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, al...

Full description

Saved in:
Bibliographic Details
Published in:Materials science in semiconductor processing 2010-02, Vol.13 (1), p.13-20
Main Authors: Velichko, O.I., Shaman, Yu.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763
cites cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763
container_end_page 20
container_issue 1
container_start_page 13
container_title Materials science in semiconductor processing
container_volume 13
creator Velichko, O.I.
Shaman, Yu.P.
description The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes. To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.
doi_str_mv 10.1016/j.mssp.2010.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753750024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369800110000053</els_id><sourcerecordid>753750024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPPUinlrz0aYteJHFj4UFQfQcsulUsrRJzaTC_ntTdhFPwsAMb957w7wkuaYkp4SKu10-II45IxEgLCeEniQLWlc8K0hNT-PMRZPVET9PLhB3hJCSUbFI3tY2gMdgglF92pqum9A4m062BZ9qZ9u4cRZT16XBq3E09nOezV-ZGcbJm7BPVXADXiZnneoRro59mXw8Pb6vXrLN6_N69bDJNBcsZFyULQWuaNGwbSM0CF23pa604kVbCK5UXZUN49BQKBSt6ZaC2PJGVGVViErwZXJ78B29-5oAgxwMauh7ZcFNKKuSVyUhrIhMdmBq7xA9dHL0ZlB-LymRc35yJ-f85JyfJEzGnKLo5mivUKu-88pqg79Kxmpexoq8-wMP4q_fBrxEbcBqaI0HHWTrzH9nfgBTzocq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753750024</pqid></control><display><type>article</type><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><source>Elsevier</source><creator>Velichko, O.I. ; Shaman, Yu.P.</creator><creatorcontrib>Velichko, O.I. ; Shaman, Yu.P.</creatorcontrib><description>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes. To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</description><identifier>ISSN: 1369-8001</identifier><identifier>EISSN: 1873-4081</identifier><identifier>DOI: 10.1016/j.mssp.2010.02.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorption ; Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Diffusion in nanoscale solids ; Diffusion in solids ; Diffusion of impurities ; Dopants ; Exact sciences and technology ; Hydrogen ; Impurities ; Interstitial impurities ; Interstitials ; Mathematical analysis ; Physics ; Semiconductors ; Simulation ; Transport properties of condensed matter (nonelectronic) ; Trapping</subject><ispartof>Materials science in semiconductor processing, 2010-02, Vol.13 (1), p.13-20</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</citedby><cites>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22835835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Velichko, O.I.</creatorcontrib><creatorcontrib>Shaman, Yu.P.</creatorcontrib><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><title>Materials science in semiconductor processing</title><description>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes. To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</description><subject>Absorption</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Diffusion of impurities</subject><subject>Dopants</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Impurities</subject><subject>Interstitial impurities</subject><subject>Interstitials</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Simulation</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Trapping</subject><issn>1369-8001</issn><issn>1873-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoHPPUinlrz0aYteJHFj4UFQfQcsulUsrRJzaTC_ntTdhFPwsAMb957w7wkuaYkp4SKu10-II45IxEgLCeEniQLWlc8K0hNT-PMRZPVET9PLhB3hJCSUbFI3tY2gMdgglF92pqum9A4m062BZ9qZ9u4cRZT16XBq3E09nOezV-ZGcbJm7BPVXADXiZnneoRro59mXw8Pb6vXrLN6_N69bDJNBcsZFyULQWuaNGwbSM0CF23pa604kVbCK5UXZUN49BQKBSt6ZaC2PJGVGVViErwZXJ78B29-5oAgxwMauh7ZcFNKKuSVyUhrIhMdmBq7xA9dHL0ZlB-LymRc35yJ-f85JyfJEzGnKLo5mivUKu-88pqg79Kxmpexoq8-wMP4q_fBrxEbcBqaI0HHWTrzH9nfgBTzocq</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Velichko, O.I.</creator><creator>Shaman, Yu.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><author>Velichko, O.I. ; Shaman, Yu.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Diffusion of impurities</topic><topic>Dopants</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Impurities</topic><topic>Interstitial impurities</topic><topic>Interstitials</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Simulation</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velichko, O.I.</creatorcontrib><creatorcontrib>Shaman, Yu.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science in semiconductor processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velichko, O.I.</au><au>Shaman, Yu.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</atitle><jtitle>Materials science in semiconductor processing</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>13</volume><issue>1</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>1369-8001</issn><eissn>1873-4081</eissn><abstract>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes. To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mssp.2010.02.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-8001
ispartof Materials science in semiconductor processing, 2010-02, Vol.13 (1), p.13-20
issn 1369-8001
1873-4081
language eng
recordid cdi_proquest_miscellaneous_753750024
source Elsevier
subjects Absorption
Condensed matter: structure, mechanical and thermal properties
Diffusion
Diffusion in nanoscale solids
Diffusion in solids
Diffusion of impurities
Dopants
Exact sciences and technology
Hydrogen
Impurities
Interstitial impurities
Interstitials
Mathematical analysis
Physics
Semiconductors
Simulation
Transport properties of condensed matter (nonelectronic)
Trapping
title Interstitial diffusion under conditions of trapping of interstitial impurity atoms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20diffusion%20under%20conditions%20of%20trapping%20of%20interstitial%20impurity%20atoms&rft.jtitle=Materials%20science%20in%20semiconductor%20processing&rft.au=Velichko,%20O.I.&rft.date=2010-02-01&rft.volume=13&rft.issue=1&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=1369-8001&rft.eissn=1873-4081&rft_id=info:doi/10.1016/j.mssp.2010.02.001&rft_dat=%3Cproquest_cross%3E753750024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753750024&rft_id=info:pmid/&rfr_iscdi=true