Loading…
Interstitial diffusion under conditions of trapping of interstitial impurity atoms
The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, al...
Saved in:
Published in: | Materials science in semiconductor processing 2010-02, Vol.13 (1), p.13-20 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 13 |
container_title | Materials science in semiconductor processing |
container_volume | 13 |
creator | Velichko, O.I. Shaman, Yu.P. |
description | The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes.
To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data. |
doi_str_mv | 10.1016/j.mssp.2010.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753750024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369800110000053</els_id><sourcerecordid>753750024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPPUinlrz0aYteJHFj4UFQfQcsulUsrRJzaTC_ntTdhFPwsAMb957w7wkuaYkp4SKu10-II45IxEgLCeEniQLWlc8K0hNT-PMRZPVET9PLhB3hJCSUbFI3tY2gMdgglF92pqum9A4m062BZ9qZ9u4cRZT16XBq3E09nOezV-ZGcbJm7BPVXADXiZnneoRro59mXw8Pb6vXrLN6_N69bDJNBcsZFyULQWuaNGwbSM0CF23pa604kVbCK5UXZUN49BQKBSt6ZaC2PJGVGVViErwZXJ78B29-5oAgxwMauh7ZcFNKKuSVyUhrIhMdmBq7xA9dHL0ZlB-LymRc35yJ-f85JyfJEzGnKLo5mivUKu-88pqg79Kxmpexoq8-wMP4q_fBrxEbcBqaI0HHWTrzH9nfgBTzocq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753750024</pqid></control><display><type>article</type><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><source>Elsevier</source><creator>Velichko, O.I. ; Shaman, Yu.P.</creator><creatorcontrib>Velichko, O.I. ; Shaman, Yu.P.</creatorcontrib><description>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes.
To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</description><identifier>ISSN: 1369-8001</identifier><identifier>EISSN: 1873-4081</identifier><identifier>DOI: 10.1016/j.mssp.2010.02.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorption ; Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Diffusion in nanoscale solids ; Diffusion in solids ; Diffusion of impurities ; Dopants ; Exact sciences and technology ; Hydrogen ; Impurities ; Interstitial impurities ; Interstitials ; Mathematical analysis ; Physics ; Semiconductors ; Simulation ; Transport properties of condensed matter (nonelectronic) ; Trapping</subject><ispartof>Materials science in semiconductor processing, 2010-02, Vol.13 (1), p.13-20</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</citedby><cites>FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22835835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Velichko, O.I.</creatorcontrib><creatorcontrib>Shaman, Yu.P.</creatorcontrib><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><title>Materials science in semiconductor processing</title><description>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes.
To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</description><subject>Absorption</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Diffusion of impurities</subject><subject>Dopants</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Impurities</subject><subject>Interstitial impurities</subject><subject>Interstitials</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Simulation</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Trapping</subject><issn>1369-8001</issn><issn>1873-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoHPPUinlrz0aYteJHFj4UFQfQcsulUsrRJzaTC_ntTdhFPwsAMb957w7wkuaYkp4SKu10-II45IxEgLCeEniQLWlc8K0hNT-PMRZPVET9PLhB3hJCSUbFI3tY2gMdgglF92pqum9A4m062BZ9qZ9u4cRZT16XBq3E09nOezV-ZGcbJm7BPVXADXiZnneoRro59mXw8Pb6vXrLN6_N69bDJNBcsZFyULQWuaNGwbSM0CF23pa604kVbCK5UXZUN49BQKBSt6ZaC2PJGVGVViErwZXJ78B29-5oAgxwMauh7ZcFNKKuSVyUhrIhMdmBq7xA9dHL0ZlB-LymRc35yJ-f85JyfJEzGnKLo5mivUKu-88pqg79Kxmpexoq8-wMP4q_fBrxEbcBqaI0HHWTrzH9nfgBTzocq</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Velichko, O.I.</creator><creator>Shaman, Yu.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</title><author>Velichko, O.I. ; Shaman, Yu.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Diffusion of impurities</topic><topic>Dopants</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Impurities</topic><topic>Interstitial impurities</topic><topic>Interstitials</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Simulation</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velichko, O.I.</creatorcontrib><creatorcontrib>Shaman, Yu.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science in semiconductor processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velichko, O.I.</au><au>Shaman, Yu.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial diffusion under conditions of trapping of interstitial impurity atoms</atitle><jtitle>Materials science in semiconductor processing</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>13</volume><issue>1</issue><spage>13</spage><epage>20</epage><pages>13-20</pages><issn>1369-8001</issn><eissn>1873-4081</eissn><abstract>The diffusion equation for nonequilibrium interstitial impurity atoms in the form convenient for numerical solution has been obtained. The proposed equation takes into account all different charge states of interstitial atoms and drift of all mobile charged species in the built-in electric field, although only the concentration of the neutral impurity interstitials must be obtained to solve the equation. The absorption of impurity interstitials by immobile sinks, mobile vacancies, and due to the passivation of dopant atoms is also taken into account. The derived effective coefficients that describe diffusion and trapping of impurity interstitials have the following characteristic features: (i) their dependences on the concentration of substitutionally dissolved dopant atoms are smooth and monotone; (ii) these concentration dependences are obtained in the form traditionally used for the approximation of effective diffusivity of substitutionally dissolved dopant atoms in processing-simulation codes.
To illustrate the usability and efficiency of the derived equation for simulation of diffusion of nonequilibrium interstitial impurity atoms, the migration of deuterium interstitials in the silicon substrate doped with boron has been simulated. The calculated profile of deuterium concentration in the passivated region agrees well with the experimental data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mssp.2010.02.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-8001 |
ispartof | Materials science in semiconductor processing, 2010-02, Vol.13 (1), p.13-20 |
issn | 1369-8001 1873-4081 |
language | eng |
recordid | cdi_proquest_miscellaneous_753750024 |
source | Elsevier |
subjects | Absorption Condensed matter: structure, mechanical and thermal properties Diffusion Diffusion in nanoscale solids Diffusion in solids Diffusion of impurities Dopants Exact sciences and technology Hydrogen Impurities Interstitial impurities Interstitials Mathematical analysis Physics Semiconductors Simulation Transport properties of condensed matter (nonelectronic) Trapping |
title | Interstitial diffusion under conditions of trapping of interstitial impurity atoms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20diffusion%20under%20conditions%20of%20trapping%20of%20interstitial%20impurity%20atoms&rft.jtitle=Materials%20science%20in%20semiconductor%20processing&rft.au=Velichko,%20O.I.&rft.date=2010-02-01&rft.volume=13&rft.issue=1&rft.spage=13&rft.epage=20&rft.pages=13-20&rft.issn=1369-8001&rft.eissn=1873-4081&rft_id=info:doi/10.1016/j.mssp.2010.02.001&rft_dat=%3Cproquest_cross%3E753750024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-365d1e3a1492b96ce6c8d5c7ca34d463aa875923e91e4a181b1e6b39675746763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753750024&rft_id=info:pmid/&rfr_iscdi=true |