Loading…
The Transition Between Real and Complex Superconducting Order Parameter Phases in UPt3
Order parameter symmetry is one of the basic characteristics of a superconductor. The heavy fermion compound UPt3 provides a rich system for studying the competition between superconductivity and other forms of electronic order and exhibits two distinct superconducting phases that are characterized...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2010-06, Vol.328 (5984), p.1368-1369 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Order parameter symmetry is one of the basic characteristics of a superconductor. The heavy fermion compound UPt3 provides a rich system for studying the competition between superconductivity and other forms of electronic order and exhibits two distinct superconducting phases that are characterized by different symmetries. We fabricated a series of Josephson tunnel junctions on the as-grown surfaces of UPt3 single crystals spanning the a-b plane. By measuring their critical current, we mapped out the magnitude of the superconducting order parameter as a function of the momentum-space direction and temperature. In the high-temperature phase, we observed a sharp node in the superconducting gap at 45 degrees with respect to the a axis; an out-of-phase component appeared in the low-temperature phase, creating a complex order parameter. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1187943 |