Loading…

Mechanical properties of a 3D needled C/SiC composite with graphite filler

A three-dimensional (3D) needled carbon/carbon (C/C) preform was achieved after one cycle of precursor infiltration-pyrolysis. The mixture of phenolic resin and 8 vol% graphite with an average particle size of 2.5 μm was employed as the carbon precursor. The C/SiC composite, made from the as-obtaine...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-01, Vol.527 (3), p.539-543
Main Authors: Cai, Yanzhi, Fan, Shangwu, Liu, Heyi, Zhang, Litong, Cheng, Laifei, Jiang, Juan, Dong, Benxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-dimensional (3D) needled carbon/carbon (C/C) preform was achieved after one cycle of precursor infiltration-pyrolysis. The mixture of phenolic resin and 8 vol% graphite with an average particle size of 2.5 μm was employed as the carbon precursor. The C/SiC composite, made from the as-obtained C/C preform infiltrated with liquid silicon, was mechanically characterized under flexural loading. The results show that the material exhibited pseudo-plastic fracture characteristic and had the average strength of 120 MPa. A major portion of the toughness was attributable to fiber elastic bridging and frictional pullout and the crack deflection and pinning in the matrix. Flake graphite had tailored the carbon-rich interfacial layer and increased the toughness of the brittle matrix.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2009.08.031