Loading…

Molecular mechanisms of Id2 down-regulation in rat liver after acetaminophen overdose. Protection by N-acetyl-L-cysteine

Abstract Id2 is a pleiotropic protein whose function depends on its expression levels. Id2-deficient cells show increased cell death. This study explored the molecular mechanisms for the modulation of Id2 expression elicited by GSH and oxidative stress in the liver of acetaminophen (APAP)-intoxicate...

Full description

Saved in:
Bibliographic Details
Published in:Free radical research 2010-09, Vol.44 (9), p.1044-1053
Main Authors: Penella, Estela, Sandoval, Juan, Zaragozá, Rosa, García, Concha, Viña, Juan R., Torres, Luis, García-Trevijano, Elena R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Id2 is a pleiotropic protein whose function depends on its expression levels. Id2-deficient cells show increased cell death. This study explored the molecular mechanisms for the modulation of Id2 expression elicited by GSH and oxidative stress in the liver of acetaminophen (APAP)-intoxicated rats. APAP-overdose induced GSH depletion, Id2 promoter hypoacetylation, RNApol-II released and, therefore, Id2 down-regulation. Id2 expression depends on c-Myc binding to its promoter. APAP-overdose decreased c-Myc content and binding to Id2 promoter. Reduction of c-Myc was not accompanied by decreased c-myc mRNA, suggesting a mechanism dependent on protein stability. Administration of N-acetyl-cysteine prior to APAP-overload prevented GSH depletion and c-Myc degradation. Consistently, c-Myc was recruited to Id2 promoter, histone-H3 was hyperacetylated, RNApol II was bound to Id2 coding region and Id2 repression prevented. The results suggest a novel transcriptional-dependent mechanism of Id2 regulation by GSH and oxidative stress induced by APAP-overdose through the indirect modulation of the proteasome pathway.
ISSN:1071-5762
1029-2470
DOI:10.3109/10715762.2010.498825