Loading…
A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions
A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to m...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2010-09, Vol.128 (3), p.1004-1014 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263 |
container_end_page | 1014 |
container_issue | 3 |
container_start_page | 1004 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 128 |
creator | Velichko, Alexander Wilcox, Paul D. |
description | A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. The method is based on an integral representation of a wave field in a homogeneous anisotropic medium. A plane incident mode is excited by applying suitable forces at nodes on a surface that encloses the scatterer. The scattered wave field is measured at monitoring nodes on a concentric surface and then decomposed into far-field scattering amplitudes of different modes in different directions. Example results for 2D and 3D bulk wave scattering in isotropic material and guided wave scattering are presented. Modeling accuracy is examined in various ways, including a comparison with the analytical solutions and calculation of the energy balance. |
doi_str_mv | 10.1121/1.3467775 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753996145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1038288323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263</originalsourceid><addsrcrecordid>eNp90cuOFCEUBmBiNE7buvAFDBujLmrkTrEx6Uy8JZO40XWFgsMMpgpaoGPGp5dOt5eNrsiBD8g5P0JPKbmklNHX9JILpbWW99CGSkaGUTJxH20IIXQQRqkL9KjWr72UIzcP0QUjI5WC6w1qO3wDCYpd4g_w2O73JVt3i0MuGEKILkJqOMQUG2BYYD2Wa_awxHSDc-h7trbs75Jdo8PV2dagHM9iwu17xjZ53G4LAPaxX64xp_oYPQh2qfDkvG7Rl3dvP199GK4_vf94tbsenCCsDV54yYJSgY7CBC5mzoERwuXsnZTeGC8pMVrb0TGpqJ2ppLQzM2utAlN8i16c3u1NfTtAbdMaq4NlsQnyoU5acmMUFbLLl_-VlPCRjSNnvNNXJ-pKrrVAmPYlrrbcdTQd45jodI6j22fnZw_zCv63_DX_Dp6fge2jW0KxycX6x3EmhOgtb9Gbk6suNtv6EP_96276K9HplCj_CSULpwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038288323</pqid></control><display><type>article</type><title>A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Velichko, Alexander ; Wilcox, Paul D.</creator><creatorcontrib>Velichko, Alexander ; Wilcox, Paul D.</creatorcontrib><description>A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. The method is based on an integral representation of a wave field in a homogeneous anisotropic medium. A plane incident mode is excited by applying suitable forces at nodes on a surface that encloses the scatterer. The scattered wave field is measured at monitoring nodes on a concentric surface and then decomposed into far-field scattering amplitudes of different modes in different directions. Example results for 2D and 3D bulk wave scattering in isotropic material and guided wave scattering are presented. Modeling accuracy is examined in various ways, including a comparison with the analytical solutions and calculation of the energy balance.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.3467775</identifier><identifier>PMID: 20815437</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Melville, NY: Acoustical Society of America</publisher><subject>Acoustics ; Anisotropy ; Computer Simulation ; Defects ; Elasticity ; Exact sciences and technology ; Finite Element Analysis ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Models, Theoretical ; Molecular Dynamics Simulation ; Motion ; Numerical Analysis, Computer-Assisted ; Physics ; Reproducibility of Results ; Scattering ; Signal Processing, Computer-Assisted ; Solid mechanics ; Structural and continuum mechanics ; Three dimensional ; Time Factors ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wave scattering</subject><ispartof>The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1004-1014</ispartof><rights>2010 Acoustical Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263</citedby><cites>FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23244400$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20815437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velichko, Alexander</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><title>A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. The method is based on an integral representation of a wave field in a homogeneous anisotropic medium. A plane incident mode is excited by applying suitable forces at nodes on a surface that encloses the scatterer. The scattered wave field is measured at monitoring nodes on a concentric surface and then decomposed into far-field scattering amplitudes of different modes in different directions. Example results for 2D and 3D bulk wave scattering in isotropic material and guided wave scattering are presented. Modeling accuracy is examined in various ways, including a comparison with the analytical solutions and calculation of the energy balance.</description><subject>Acoustics</subject><subject>Anisotropy</subject><subject>Computer Simulation</subject><subject>Defects</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Molecular Dynamics Simulation</subject><subject>Motion</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Physics</subject><subject>Reproducibility of Results</subject><subject>Scattering</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><subject>Time Factors</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wave scattering</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90cuOFCEUBmBiNE7buvAFDBujLmrkTrEx6Uy8JZO40XWFgsMMpgpaoGPGp5dOt5eNrsiBD8g5P0JPKbmklNHX9JILpbWW99CGSkaGUTJxH20IIXQQRqkL9KjWr72UIzcP0QUjI5WC6w1qO3wDCYpd4g_w2O73JVt3i0MuGEKILkJqOMQUG2BYYD2Wa_awxHSDc-h7trbs75Jdo8PV2dagHM9iwu17xjZ53G4LAPaxX64xp_oYPQh2qfDkvG7Rl3dvP199GK4_vf94tbsenCCsDV54yYJSgY7CBC5mzoERwuXsnZTeGC8pMVrb0TGpqJ2ppLQzM2utAlN8i16c3u1NfTtAbdMaq4NlsQnyoU5acmMUFbLLl_-VlPCRjSNnvNNXJ-pKrrVAmPYlrrbcdTQd45jodI6j22fnZw_zCv63_DX_Dp6fge2jW0KxycX6x3EmhOgtb9Gbk6suNtv6EP_96276K9HplCj_CSULpwU</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Velichko, Alexander</creator><creator>Wilcox, Paul D.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions</title><author>Velichko, Alexander ; Wilcox, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustics</topic><topic>Anisotropy</topic><topic>Computer Simulation</topic><topic>Defects</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Molecular Dynamics Simulation</topic><topic>Motion</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Physics</topic><topic>Reproducibility of Results</topic><topic>Scattering</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><topic>Time Factors</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velichko, Alexander</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velichko, Alexander</au><au>Wilcox, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>128</volume><issue>3</issue><spage>1004</spage><epage>1014</epage><pages>1004-1014</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. The method is based on an integral representation of a wave field in a homogeneous anisotropic medium. A plane incident mode is excited by applying suitable forces at nodes on a surface that encloses the scatterer. The scattered wave field is measured at monitoring nodes on a concentric surface and then decomposed into far-field scattering amplitudes of different modes in different directions. Example results for 2D and 3D bulk wave scattering in isotropic material and guided wave scattering are presented. Modeling accuracy is examined in various ways, including a comparison with the analytical solutions and calculation of the energy balance.</abstract><cop>Melville, NY</cop><pub>Acoustical Society of America</pub><pmid>20815437</pmid><doi>10.1121/1.3467775</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2010-09, Vol.128 (3), p.1004-1014 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_753996145 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Acoustics Anisotropy Computer Simulation Defects Elasticity Exact sciences and technology Finite Element Analysis Finite element method Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Models, Theoretical Molecular Dynamics Simulation Motion Numerical Analysis, Computer-Assisted Physics Reproducibility of Results Scattering Signal Processing, Computer-Assisted Solid mechanics Structural and continuum mechanics Three dimensional Time Factors Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Wave scattering |
title | A generalized approach for efficient finite element modeling of elastodynamic scattering in two and three dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20approach%20for%20efficient%20finite%20element%20modeling%20of%20elastodynamic%20scattering%20in%20two%20and%20three%20dimensions&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Velichko,%20Alexander&rft.date=2010-09-01&rft.volume=128&rft.issue=3&rft.spage=1004&rft.epage=1014&rft.pages=1004-1014&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.3467775&rft_dat=%3Cproquest_cross%3E1038288323%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-d4d52f66f1849f34b33e20035bdc55d99d510977a8c2561ab151134b9b776f263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038288323&rft_id=info:pmid/20815437&rfr_iscdi=true |