Loading…
Tailoring Lipoplex Composition to the Lipid Composition of Plasma Membrane: A Trojan Horse for Cell Entry?
The first interaction between lipoplexes and cells is charge-mediated and not specific. Endocytosis is considered to be the main pathway for lipoplex entry. Upon interaction between lipoplexes and the plasma membrane, intermixing between lipoplex and membrane lipids is necessary for efficient endocy...
Saved in:
Published in: | Langmuir 2010-09, Vol.26 (17), p.13867-13873 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The first interaction between lipoplexes and cells is charge-mediated and not specific. Endocytosis is considered to be the main pathway for lipoplex entry. Upon interaction between lipoplexes and the plasma membrane, intermixing between lipoplex and membrane lipids is necessary for efficient endocytosis. Here we study the mechanism of the different endocytic pathways in lipid-mediated gene delivery. We show that DC−Chol−DOPE/DNA lipoplexes preferentially use a raft-mediated endocytosis, while DOTAP−DOPC/DNA systems are mainly internalized by not specific fluid phase macropinocitosys. On the other hand, most efficient multicomponent lipoplexes, incorporating different lipid species in their lipid bilayer, can use multiple endocytic pathways to enter cells. Our data demonstrate that efficiency of endocytosis is regulated by shape coupling between lipoplex and membrane lipids. We suggest that such a shape-dependent coupling regulates efficient formation of endocytic vesicles thus determining the success of internalization. Our results suggest that tailoring the lipoplex lipid composition to the patchwork-like plasma membrane profile could be a successful machinery of coordinating the endocytic pathway activities and the subsequent intracellular processing. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la1023899 |