Loading…

Binding of Imidazole to the Heme of Cytochrome c1 and Inhibition of the bc1 Complex from Rhodobacter sphaeroides

We have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c1 in detergent-solubilized bc1 complex from Rhodobacter sphaeroides. Imidazole binding to cyt c1 substantially lowers the midpoint potential of the heme and fully inhibit...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-07, Vol.285 (29), p.22513-22521
Main Authors: Kokhan, Oleksandr, Shinkarev, Vladimir P., Wraight, Colin A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c1 in detergent-solubilized bc1 complex from Rhodobacter sphaeroides. Imidazole binding to cyt c1 substantially lowers the midpoint potential of the heme and fully inhibits bc1 complex activity. Temperature dependences showed that binding of Im (Kd ≈ 330 μm, 25 °C, pH 8) is enthalpically driven (ΔH0 = −56 kJ/mol, ΔS0 = −121 J/mol/K), whereas binding of MeIm is 30 times weaker (Kd ≈ 9.3 mm) and is entropically driven (ΔH0 = 47 kJ/mol, ΔS0° = 197 J/mol/K). The large enthalpic and entropic contributions suggest significant structural and solvation changes in cyt c1 triggered by ligand binding. Comparison of these results with those obtained previously for soluble cyts c and c2 suggested that Im binding to cyt c1 is assisted by formation of hydrogen bonds within the heme cleft. This was strongly supported by molecular dynamics simulations of Im adducts of cyts c, c2, and c1, which showed hydrogen bonds formed between the NδH of Im and the cyt c1 protein, or with a water molecule sequestered with the ligand in the heme cleft.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.128058