Loading…

Quaternary glaciation of Gurla Mandhata (Naimon’anyi)

The Quaternary glaciation of Gurla Mandhata (Naimona’nyi), an impressive, isolated dome-shaped massif situated in a remote region of southern Tibet, was examined using glacial geomorphic methods and dated using 10Be terrestrial cosmogenic nuclides. The oldest moraines, representing an expanded ice c...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary science reviews 2010-07, Vol.29 (15), p.1817-1830
Main Authors: Owen, Lewis A., Yi, Chaolu, Finkel, Robert C., Davis, Nicole K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Quaternary glaciation of Gurla Mandhata (Naimona’nyi), an impressive, isolated dome-shaped massif situated in a remote region of southern Tibet, was examined using glacial geomorphic methods and dated using 10Be terrestrial cosmogenic nuclides. The oldest moraines, representing an expanded ice cap that stretched ∼ 5 km into the foreland of the Gurla Mandhata massif, likely formed during marine isotope stage (MIS) 10 or an earlier glacial cycle. Another glacial expansion of coalescing piedmont type occurred during the early part of the last glacial cycle or the penultimate glacial cycle, after which glaciers became restricted to entrenched valley types. Impressive latero-frontal moraines at the mouths of most valleys date to the early part of the last glacial cycle and MIS 3. A succession of six sets of moraines within the valleys and up to the contemporary glaciers show that glaciers advanced during the Lateglacial, Early Holocene, Neoglacial and possibly Little Ice Age. The change of style of glaciation throughout the latter part of the Quaternary, from expanded ice caps to deeply entrenched valley glaciers, might reflect: (1) climatic controls with reduced moisture supply to the region over time; and/or (2) tectonic controls reflecting increase basin subsidence due to detachment faulting and enhanced valley incision.
ISSN:0277-3791
1873-457X
DOI:10.1016/j.quascirev.2010.03.017