Loading…
Deregulated Expression of the Per1 and Per2 in Human Gliomas
Growing evidence shows that the deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of genes controlling circadian rhythm in glioma cells have not been explored. Using reverse transcription polymeras...
Saved in:
Published in: | Canadian journal of neurological sciences 2010-05, Vol.37 (3), p.365-370 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growing evidence shows that the deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of genes controlling circadian rhythm in glioma cells have not been explored.
Using reverse transcription polymerase chain reaction and immunohistochemistry techniques, we examined the expression of two important clock genes, Per1 and Per2, in 33 gliomas.
In this study, out of 33 gliomas, 28 were Per1-positive, and 23 were Per2-positive. The expression levels of Per1 and Per2 in glioma cells were significantly different from the surrounding non-glioma cells (P0.05). While there was no difference in the intensity of immunoactivity for Per2 between high-grade gliomas and low-grade gliomas (r=-0.330, P=0.061), the expression level of Per1 in high-grade gliomas was significantly lower than that in low-grade gliomas(r=-0.433, P=0.012).
In this study, we found that the expression of Per1 and Per2 in glioma cells was much lower than in the surrounding non-glioma cells. Therefore, we suggest that disturbances in Per1 and Per2 expression may result in the disruption of the control of normal circadian rhythm, thus benefiting the survival of glioma cells. Differential expression of circadian clock genes in glioma and non-glioma cells may provide a molecular basis for the chemotherapy of gliomas. |
---|---|
ISSN: | 0317-1671 2057-0155 |
DOI: | 10.1017/S031716710001026X |