Loading…

Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material

An activated carbon was developed from coconut shell fibers, characterized and used for the removal of methylene blue (basic) and methyl orange (acidic) dyes from wastewater successfully. Adsorption studies were carried out at different temperatures, particle size, pH, and adsorbent doses. The adsor...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2003-04, Vol.42 (9), p.1965-1976
Main Authors: Singh, Kunwar P, Mohan, Dinesh, Sinha, Sarita, Tondon, G. S, Gosh, Devlina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An activated carbon was developed from coconut shell fibers, characterized and used for the removal of methylene blue (basic) and methyl orange (acidic) dyes from wastewater successfully. Adsorption studies were carried out at different temperatures, particle size, pH, and adsorbent doses. The adsorption data are correlated with both Langmuir and Freundlich models. The results indicate that the Freundlich model fits the data better as compared to the Langmuir model in terms of regression coefficients. Isotherms have been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of adsorption. The kinetic studies were also conducted, and the adsorption of methylene blue and methyl orange follow the first-order rate equation. Various kinetic parameters such as the mass-transfer coefficient, effective diffusion coefficient, activation energy, and entropy of activation were evaluated to establish the mechanisms. It was concluded that methylene blue adsorption occurs through a film diffusion mechanism at low as well as at higher concentrations, while methyl orange adsorption occurs through film diffusion at low concentration and particle diffusion at high concentrations. The sorption capacity of the developed carbon is comparable to the other available adsorbents, and costwise it is quite cheaper.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie020800d