Loading…
Receptor Arrays for the Selective and Efficient Capturing of Viral Particles
We describe microarrays of receptors on gold/glass substrates for the selective capturing of viral particles at high density. Microscale gold squares were surface-modified with alkanethiol derivatives which enabled the immobilization of the His6-tagged virus-binding domain from the very-low density...
Saved in:
Published in: | Bioconjugate chemistry 2009-03, Vol.20 (3), p.466-475 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe microarrays of receptors on gold/glass substrates for the selective capturing of viral particles at high density. Microscale gold squares were surface-modified with alkanethiol derivatives which enabled the immobilization of the His6-tagged virus-binding domain from the very-low density lipoprotein (VLDL) receptor. The free glass areas surrounding the gold squares were passivated with a dense film of poly(ethylene glycol) (PEG). As assessed by atomic force microscopy, human rhinovirus particles were captured onto the VLDL-receptor patches with a high surface coverage but were effectively repelled by the PEG layer, resulting in a 330 000-fold higher density of the particles on the gold as compared to the glass surfaces. The metal chelate-based coupling strategy was found to be superior to two alternative routes, which used the covalent coupling of viral particles or viral receptors to the substrate surface. The high-density receptor arrays were employed for sensing and characterizing viral particles with so far unprecedented selectivity. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc800357j |