Loading…
Stimuli Responsive Self-Assembled Hydrogel of a Low Molecular Weight Free Dipeptide with Potential for Tunable Drug Delivery
Bottom-up fabrication by molecular self-assembly is now widely recognized as a potent method for generating interesting and functional nano- and mesoscale structures. Hydrogels from biocompatible molecules are an interesting class of mesoscale assemblies with potential biomedical applications. The s...
Saved in:
Published in: | Biomacromolecules 2008-08, Vol.9 (8), p.2244-2250 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bottom-up fabrication by molecular self-assembly is now widely recognized as a potent method for generating interesting and functional nano- and mesoscale structures. Hydrogels from biocompatible molecules are an interesting class of mesoscale assemblies with potential biomedical applications. The self-assembly of a proteolysis resistant aromatic dipeptide containing a conformational constraining residue (ΔPhe) into a stable hydrogel has been studied in this work. The reported dipeptide has free -N and -C termini. The hydrogel was self-supportive, was fractaline in nature, and possessed high mechanical strength. It was responsive to environmental conditions like pH, temperature, and ionic strength. The gel matrix could encapsulate and release bioactive molecules in a sustained manner. The described hydrogel showed no observable cytotoxicity to the HeLa and L929 cell lines in culture. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm800404z |