Loading…
Influence of Amide versus Ester Linkages on the Properties of Eight-Armed PEG-PLA Star Block Copolymer Hydrogels
Water-soluble eight-armed poly(ethylene glycol)-poly(l-lactide) star block copolymers linked by an amide or ester group between the PEG core and the PLA blocks (PEG-(NHCO)-(PLA)8 and PEG-(OCO)-(PLA)8) were synthesized by the stannous octoate catalyzed ring-opening polymerization of l-lactide using a...
Saved in:
Published in: | Biomacromolecules 2010-01, Vol.11 (1), p.224-232 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water-soluble eight-armed poly(ethylene glycol)-poly(l-lactide) star block copolymers linked by an amide or ester group between the PEG core and the PLA blocks (PEG-(NHCO)-(PLA)8 and PEG-(OCO)-(PLA)8) were synthesized by the stannous octoate catalyzed ring-opening polymerization of l-lactide using an amine- or hydroxyl-terminated eight-armed star PEG. At concentrations above the critical gel concentration, thermosensitive hydrogels were obtained, showing a reversible single gel-to-sol transition. At similar composition PEG-(NHCO)-(PLA)8 hydrogels were formed at significantly lower polymer concentrations and had higher storage moduli. Whereas the hydrolytic degradation/dissolution of the PEG-(OCO)-(PLA)8 takes place by preferential hydrolysis of the ester bond between the PEG and PLA block, the PEG-(NHCO)-(PLA)8 hydrogels degrade through hydrolysis of ester bonds in the PLA main chain. Because of their relatively good mechanical properties and slow degradation in vitro, PEG-(NHCO)-(PLA)8 hydrogels are interesting materials for biomedical applications such as controlled drug delivery systems and matrices for tissue engineering. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm901080d |