Loading…
Molecular Design of Spacer-N-Linked Sialoglycopolypeptide as Polymeric Inhibitors Against Influenza Virus Infection
A series of spacer-N-linked glycopolymers carrying long/short α2,3/6 sialylated glycan were designed as polymeric inhibitors of influenza virus. Lactose (Lac) and N-acetyllactosamine (LN: Galβ1,4GlcNAc) were first converted to spacer-N-linked disaccharide glycosides, followed by consecutive enzymati...
Saved in:
Published in: | Biomacromolecules 2009-07, Vol.10 (7), p.1894-1903 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of spacer-N-linked glycopolymers carrying long/short α2,3/6 sialylated glycan were designed as polymeric inhibitors of influenza virus. Lactose (Lac) and N-acetyllactosamine (LN: Galβ1,4GlcNAc) were first converted to spacer-N-linked disaccharide glycosides, followed by consecutive enzymatic addition of GlcNAc and Gal residues to the glycosides. The resulting spacer-N-linked glycosides with di-, tetra-, and hexasaccharides carrying a Lac, LN, lacto-N-neotetraose (LNnT: Galβ1,4GlcNAcβ1,3Galβ1,4Glc), and LNβ1,3LNnT were coupled to the carboxy group of γ-polyglutamic acid (γ-PGA) and enzymatically converted to glycopolypeptides carrying α2,3/6 sialylated glycans. The interactions of a series of sialoglycopolypeptides with avian and human influenza virus strains were investigated using a hemagglutination inhibition assay. The avian virus A/Duck/HongKong/313/4/78 (H5N3) bound specifically, regardless of the structure of the asialo portion. In contrast, human virus A/Aichi/2/68 (H3N2) bound preferentially to long α2,6sialylated glycans with penta- or heptasaccharides in a glycan length-dependent manner. Furthermore, the Sambucus sieboldiana (SNA) lectin was also useful as a model of human virus hemagglutinin (HA) for understanding the carbohydrate binding properties, because the recognition motifs of the inner sugar in the receptor were very similar. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm900300j |