Loading…
Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis
Electron transport in continuous light has been investigated in chromatophores of Rhodopseudomonas capsulata. Ala pho+, depleted in ubiquinone-10 and subsequently reconstituted with various ubiquinone homologs and analogs. In addition the restoration of electron transport in depleted chromatophores...
Saved in:
Published in: | Journal of bioenergetics and biomembranes 1980-08, Vol.12 (3-4), p.95-110 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron transport in continuous light has been investigated in chromatophores of Rhodopseudomonas capsulata. Ala pho+, depleted in ubiquinone-10 and subsequently reconstituted with various ubiquinone homologs and analogs. In addition the restoration of electron transport in depleted chromatophores by the artificial redox compounds N-methylphenazonium methosulfate and N,N,N',N'-tetramethyl-p-phenylenediamine was studied. The following pattern of activities was obtained: (1) Reconstitution of cyclic photophosphorylation with ubiquinone-10 was saturated at about 40 ubiquinone molecules per reaction center. (2) Reconstitution by ubiquinone homologs was dependent on the length of the isoprenoid side chain and the amount of residual ubiquinone in the extracted chromatophores. If two or more molecules of ubiquinone-10 per reaction center were retained, all homologs with a side chain longer than two isoprene units were as active as ubiquinone-10 in reconstitution, and the double bonds in the side chain were not required. If less than two molecules per reaction center remained, an unsaturated side chain longer than five units was necessary for full activity. Plastoquinone, alpha-tocopherol, and naphthoquinones of the vitamin K series were relatively inactive in both cases. (3) All ubiquinone homologs, also ubiquinone-1 and -2, could be reduced equally well by the photosynthetic reaction center, as measured by light-induced proton binding in the presence of antimycin A and uncoupler. Plastoquinone was found to be a poor electron acceptor. (4) Photophosphorylation could be reconstituted by N-methylphenazonium methosulfate as well as by N,N,N',N'-tetramethyl-p-phenylenediamine in an antimycin-insensitive way, if more than two ubiquinones per reaction center remained. These compounds were active also in more extensively extracted particles reconstituted with ubiquinone-1, which itself was inactive. |
---|---|
ISSN: | 0145-479X 1573-6881 |
DOI: | 10.1007/BF00744677 |