Loading…

Cellular Delivery of Impermeable Effector Molecules in the Form of Conjugates with Peptides Capable of Mediating Membrane Translocation

Most molecules that are not actively imported by living cells are impermeable to cell membranes, including practically all macromolecules and even many small molecules whose physicochemical properties prevent passive membrane diffusion. The use of peptide vectors capable of transporting such molecul...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2001-11, Vol.12 (6), p.825-841
Main Authors: Fischer, Peter M, Krausz, Eberhard, Lane, David P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most molecules that are not actively imported by living cells are impermeable to cell membranes, including practically all macromolecules and even many small molecules whose physicochemical properties prevent passive membrane diffusion. The use of peptide vectors capable of transporting such molecules into cells in the form of covalent conjugates has become an increasingly attractive solution to this problem. Not only has this technology permitted the study of modulating intracellular target proteins, but it has also gained importance as an alternative to conventional cellular transfection with oligonucleotides. Peptide vectors derived from viral, bacterial, insect, and mammalian proteins endowed with membrane translocation properties have now been proposed as delivery vectors. These are discussed comprehensively and critically in terms of relative utility, applications to compound classes and specific molecules, and relevant conjugation chemistry. Although in most cases the mechanisms of membrane translocation are still unclear, physicochemical studies have been carried out with a number of peptide delivery vectors. Unifying and distinguishing mechanistic features of the various vectors are discussed. Until a few years ago speculations that it might be possible to deliver peptides, proteins, oligonucleotides, and impermeable small molecules with the aid of cellular delivery peptides not only to target cells in vitro, but in vivo, was received with scepticism. However, the first studies showing pharmacological applications of conjugates between macromolecules and peptide delivery vectors are now being reported, and therapies based on such conjugates are beginning to appear feasible.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc0155115