Loading…

Internal-tide energy over topography

The method used to separate surface and internal tides ultimately defines properties such as internal‐tide generation and the depth structure of internal‐tide energy flux. Here, we provide a detailed analysis of several surface‐/internal‐tide decompositions over arbitrary topography. In all decompos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Oceans 2010-06, Vol.115 (C6), p.n/a
Main Authors: Kelly, S. M., Nash, J. D., Kunze, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3
cites cdi_FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3
container_end_page n/a
container_issue C6
container_start_page
container_title Journal of Geophysical Research: Oceans
container_volume 115
creator Kelly, S. M.
Nash, J. D.
Kunze, E.
description The method used to separate surface and internal tides ultimately defines properties such as internal‐tide generation and the depth structure of internal‐tide energy flux. Here, we provide a detailed analysis of several surface‐/internal‐tide decompositions over arbitrary topography. In all decompositions, surface‐tide velocity is expressed as the depth average of total velocity. Analysis indicates that surface‐tide pressure is best expressed as the depth average of total pressure plus a new depth‐dependent profile of pressure, which is due to isopycnal heaving by movement of the free surface. Internal‐tide velocity and pressure are defined as total variables minus the surface‐tide components. Corresponding surface‐ and internal‐tide energy equations are derived that contain energy conversion solely through topographic internal‐tide generation. The depth structure of internal‐tide energy flux produced by the new decomposition is unambiguous and differs from that of past decompositions. Numerical simulations over steep topography reveal that the decomposition is self‐consistent and physically relevant. Analysis of observations over Kaena Ridge, Hawaii; and the Oregon continental slope indicate O (50 W m−1) error in depth‐integrated energy fluxes when internal‐tide pressure is computed as the residual of pressure from its depth average. While these errors are small at major internal‐tide generation sites, they may be significant where surface tides are larger and depth‐integrated fluxes are weaker (e.g., over continental shelves).
doi_str_mv 10.1029/2009JC005618
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754879146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754879146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgCo65mx9giKIHq2_-N0fpdG4MBVH0FrIunZ1dW5NO3bc3Y2OIh-USCL_nhTwvQscYrjAQdU0A1DAB4ALHe6hFMBcRIUD2UQswiyMgRB6ijvczCIdxwQC30OmgbKwrTRE1-cR2bWnddNmtvqzrNlVdTZ2p35dH6CAzhbedzd1GL3e3z8l9NHrsD5KbUWS4EDTilIoUaExBjieKpgoLSw0TEtuMxPEki2XKxowoSAWfAGXhQdiM8bECFTxto_P13NpVnwvrGz3PfWqLwpS2WngtOYulwkwEebFTYoWV4gGqQE_-0Vm1WP3Y61gAFVgqFtDlGqWu8t7ZTNcunxu31Bj0ql79t97AzzYzjU9NkTlTprnfZggFEQqRwdG1-84Lu9w5Uw_7TwkOi6IhFa1TuW_szzZl3IcWkkquXx_6-k3xXkKSnub0F9xTkvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860361794</pqid></control><display><type>article</type><title>Internal-tide energy over topography</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Kelly, S. M. ; Nash, J. D. ; Kunze, E.</creator><creatorcontrib>Kelly, S. M. ; Nash, J. D. ; Kunze, E.</creatorcontrib><description>The method used to separate surface and internal tides ultimately defines properties such as internal‐tide generation and the depth structure of internal‐tide energy flux. Here, we provide a detailed analysis of several surface‐/internal‐tide decompositions over arbitrary topography. In all decompositions, surface‐tide velocity is expressed as the depth average of total velocity. Analysis indicates that surface‐tide pressure is best expressed as the depth average of total pressure plus a new depth‐dependent profile of pressure, which is due to isopycnal heaving by movement of the free surface. Internal‐tide velocity and pressure are defined as total variables minus the surface‐tide components. Corresponding surface‐ and internal‐tide energy equations are derived that contain energy conversion solely through topographic internal‐tide generation. The depth structure of internal‐tide energy flux produced by the new decomposition is unambiguous and differs from that of past decompositions. Numerical simulations over steep topography reveal that the decomposition is self‐consistent and physically relevant. Analysis of observations over Kaena Ridge, Hawaii; and the Oregon continental slope indicate O (50 W m−1) error in depth‐integrated energy fluxes when internal‐tide pressure is computed as the residual of pressure from its depth average. While these errors are small at major internal‐tide generation sites, they may be significant where surface tides are larger and depth‐integrated fluxes are weaker (e.g., over continental shelves).</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2009JC005618</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Continental shelves ; Continental slope ; Decomposition ; Direct power generation ; Earth sciences ; Earth, ocean, space ; Energy conversion ; Exact sciences and technology ; Flux ; Fluxes ; Free surfaces ; Geophysics ; internal tide generation ; Marine ; Mathematical analysis ; Mathematical models ; Physical oceanography ; Scientific apparatus &amp; instruments ; Tides ; Topography</subject><ispartof>Journal of Geophysical Research: Oceans, 2010-06, Vol.115 (C6), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3</citedby><cites>FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JC005618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JC005618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11493,27901,27902,46443,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23066637$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, S. M.</creatorcontrib><creatorcontrib>Nash, J. D.</creatorcontrib><creatorcontrib>Kunze, E.</creatorcontrib><title>Internal-tide energy over topography</title><title>Journal of Geophysical Research: Oceans</title><addtitle>J. Geophys. Res</addtitle><description>The method used to separate surface and internal tides ultimately defines properties such as internal‐tide generation and the depth structure of internal‐tide energy flux. Here, we provide a detailed analysis of several surface‐/internal‐tide decompositions over arbitrary topography. In all decompositions, surface‐tide velocity is expressed as the depth average of total velocity. Analysis indicates that surface‐tide pressure is best expressed as the depth average of total pressure plus a new depth‐dependent profile of pressure, which is due to isopycnal heaving by movement of the free surface. Internal‐tide velocity and pressure are defined as total variables minus the surface‐tide components. Corresponding surface‐ and internal‐tide energy equations are derived that contain energy conversion solely through topographic internal‐tide generation. The depth structure of internal‐tide energy flux produced by the new decomposition is unambiguous and differs from that of past decompositions. Numerical simulations over steep topography reveal that the decomposition is self‐consistent and physically relevant. Analysis of observations over Kaena Ridge, Hawaii; and the Oregon continental slope indicate O (50 W m−1) error in depth‐integrated energy fluxes when internal‐tide pressure is computed as the residual of pressure from its depth average. While these errors are small at major internal‐tide generation sites, they may be significant where surface tides are larger and depth‐integrated fluxes are weaker (e.g., over continental shelves).</description><subject>Continental shelves</subject><subject>Continental slope</subject><subject>Decomposition</subject><subject>Direct power generation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy conversion</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Fluxes</subject><subject>Free surfaces</subject><subject>Geophysics</subject><subject>internal tide generation</subject><subject>Marine</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physical oceanography</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Tides</subject><subject>Topography</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgCo65mx9giKIHq2_-N0fpdG4MBVH0FrIunZ1dW5NO3bc3Y2OIh-USCL_nhTwvQscYrjAQdU0A1DAB4ALHe6hFMBcRIUD2UQswiyMgRB6ijvczCIdxwQC30OmgbKwrTRE1-cR2bWnddNmtvqzrNlVdTZ2p35dH6CAzhbedzd1GL3e3z8l9NHrsD5KbUWS4EDTilIoUaExBjieKpgoLSw0TEtuMxPEki2XKxowoSAWfAGXhQdiM8bECFTxto_P13NpVnwvrGz3PfWqLwpS2WngtOYulwkwEebFTYoWV4gGqQE_-0Vm1WP3Y61gAFVgqFtDlGqWu8t7ZTNcunxu31Bj0ql79t97AzzYzjU9NkTlTprnfZggFEQqRwdG1-84Lu9w5Uw_7TwkOi6IhFa1TuW_szzZl3IcWkkquXx_6-k3xXkKSnub0F9xTkvg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Kelly, S. M.</creator><creator>Nash, J. D.</creator><creator>Kunze, E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201006</creationdate><title>Internal-tide energy over topography</title><author>Kelly, S. M. ; Nash, J. D. ; Kunze, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Continental shelves</topic><topic>Continental slope</topic><topic>Decomposition</topic><topic>Direct power generation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy conversion</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Fluxes</topic><topic>Free surfaces</topic><topic>Geophysics</topic><topic>internal tide generation</topic><topic>Marine</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physical oceanography</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Tides</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, S. M.</creatorcontrib><creatorcontrib>Nash, J. D.</creatorcontrib><creatorcontrib>Kunze, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research: Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, S. M.</au><au>Nash, J. D.</au><au>Kunze, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal-tide energy over topography</atitle><jtitle>Journal of Geophysical Research: Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-06</date><risdate>2010</risdate><volume>115</volume><issue>C6</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The method used to separate surface and internal tides ultimately defines properties such as internal‐tide generation and the depth structure of internal‐tide energy flux. Here, we provide a detailed analysis of several surface‐/internal‐tide decompositions over arbitrary topography. In all decompositions, surface‐tide velocity is expressed as the depth average of total velocity. Analysis indicates that surface‐tide pressure is best expressed as the depth average of total pressure plus a new depth‐dependent profile of pressure, which is due to isopycnal heaving by movement of the free surface. Internal‐tide velocity and pressure are defined as total variables minus the surface‐tide components. Corresponding surface‐ and internal‐tide energy equations are derived that contain energy conversion solely through topographic internal‐tide generation. The depth structure of internal‐tide energy flux produced by the new decomposition is unambiguous and differs from that of past decompositions. Numerical simulations over steep topography reveal that the decomposition is self‐consistent and physically relevant. Analysis of observations over Kaena Ridge, Hawaii; and the Oregon continental slope indicate O (50 W m−1) error in depth‐integrated energy fluxes when internal‐tide pressure is computed as the residual of pressure from its depth average. While these errors are small at major internal‐tide generation sites, they may be significant where surface tides are larger and depth‐integrated fluxes are weaker (e.g., over continental shelves).</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JC005618</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Oceans, 2010-06, Vol.115 (C6), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_754879146
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive
subjects Continental shelves
Continental slope
Decomposition
Direct power generation
Earth sciences
Earth, ocean, space
Energy conversion
Exact sciences and technology
Flux
Fluxes
Free surfaces
Geophysics
internal tide generation
Marine
Mathematical analysis
Mathematical models
Physical oceanography
Scientific apparatus & instruments
Tides
Topography
title Internal-tide energy over topography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal-tide%20energy%20over%20topography&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Oceans&rft.au=Kelly,%20S.%20M.&rft.date=2010-06&rft.volume=115&rft.issue=C6&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JC005618&rft_dat=%3Cproquest_cross%3E754879146%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5663-5336c038307bd93c916e3a4671ef288df87c4b4290c65d034f876ef45b90993c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860361794&rft_id=info:pmid/&rfr_iscdi=true