Loading…
Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression
The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bear...
Saved in:
Published in: | Journal of bionics engineering 2009-09, Vol.6 (3), p.203-213 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3 |
container_end_page | 213 |
container_issue | 3 |
container_start_page | 203 |
container_title | Journal of bionics engineering |
container_volume | 6 |
creator | Presser, V. Schultheiß, S. Berthold, C. Nickel, K.G. |
description | The spines of pencil and lance urchins
Heterocentrotus mammillatus and
Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using
X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications. |
doi_str_mv | 10.1016/S1672-6529(08)60125-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754881025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1672652908601250</els_id><sourcerecordid>754881025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</originalsourceid><addsrcrecordid>eNqFkd9qFDEUxoMouFYfQciVf8BZk8xkJnslutha2GJhLV6G08yZTspMsj2ZqfSZfEmzXemNYEPgcJLf95GTj7HXUiylkPXHrawbVdRard4J874WUulCPGELpauyULKST9niAXnOXqR0LYReKVMu2O8tAr8g1_vAtzsfMHHIm5_FFodie5cmHHkXiZ8jjQiXA37gG3_VT8VP3Be-RoLRu8R_-annJwQOu3ngx-CHmZB_wR5ufaQlPwea-OmSn6HrIXgHw8Mljx3_9x1zaJH4Oo47wpR8DC_Zsw6GhK_-1iN2cfz1x_pbsfl-crr-vClcpc1UYB61dNg42WptQArVVAAKla7LCrpaG12WXb3at06BNNi1Cl0-a_K67Moj9vbgu6N4M2Oa7OiTw2GAgHFOttGVMdlWZ_LNf8lSi6qRZpVBfQAdxZQIO7sjPwLdWSnsPkR7H6LdJ2SFsfchWpF19UGXMh-ukOx1nCnk6R8VfjoIMX_Urc_C5DwGh60ndJNto3_E4Q8gILUd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35047189</pqid></control><display><type>article</type><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><source>Elsevier</source><source>Springer Nature</source><creator>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</creator><creatorcontrib>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</creatorcontrib><description>The spines of pencil and lance urchins
Heterocentrotus mammillatus and
Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using
X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1016/S1672-6529(08)60125-0</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; biomimetic ; calcite ; compression ; Echinoidea ; Engineering ; mechanical behavior ; Phyllacanthus imperialis ; sea urchin spines</subject><ispartof>Journal of bionics engineering, 2009-09, Vol.6 (3), p.203-213</ispartof><rights>2009 Jilin University</rights><rights>Jilin University 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</citedby><cites>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Presser, V.</creatorcontrib><creatorcontrib>Schultheiß, S.</creatorcontrib><creatorcontrib>Berthold, C.</creatorcontrib><creatorcontrib>Nickel, K.G.</creatorcontrib><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>The spines of pencil and lance urchins
Heterocentrotus mammillatus and
Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using
X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>biomimetic</subject><subject>calcite</subject><subject>compression</subject><subject>Echinoidea</subject><subject>Engineering</subject><subject>mechanical behavior</subject><subject>Phyllacanthus imperialis</subject><subject>sea urchin spines</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkd9qFDEUxoMouFYfQciVf8BZk8xkJnslutha2GJhLV6G08yZTspMsj2ZqfSZfEmzXemNYEPgcJLf95GTj7HXUiylkPXHrawbVdRard4J874WUulCPGELpauyULKST9niAXnOXqR0LYReKVMu2O8tAr8g1_vAtzsfMHHIm5_FFodie5cmHHkXiZ8jjQiXA37gG3_VT8VP3Be-RoLRu8R_-annJwQOu3ngx-CHmZB_wR5ufaQlPwea-OmSn6HrIXgHw8Mljx3_9x1zaJH4Oo47wpR8DC_Zsw6GhK_-1iN2cfz1x_pbsfl-crr-vClcpc1UYB61dNg42WptQArVVAAKla7LCrpaG12WXb3at06BNNi1Cl0-a_K67Moj9vbgu6N4M2Oa7OiTw2GAgHFOttGVMdlWZ_LNf8lSi6qRZpVBfQAdxZQIO7sjPwLdWSnsPkR7H6LdJ2SFsfchWpF19UGXMh-ukOx1nCnk6R8VfjoIMX_Urc_C5DwGh60ndJNto3_E4Q8gILUd</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Presser, V.</creator><creator>Schultheiß, S.</creator><creator>Berthold, C.</creator><creator>Nickel, K.G.</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>7QP</scope><scope>P64</scope></search><sort><creationdate>20090901</creationdate><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><author>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>biomimetic</topic><topic>calcite</topic><topic>compression</topic><topic>Echinoidea</topic><topic>Engineering</topic><topic>mechanical behavior</topic><topic>Phyllacanthus imperialis</topic><topic>sea urchin spines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Presser, V.</creatorcontrib><creatorcontrib>Schultheiß, S.</creatorcontrib><creatorcontrib>Berthold, C.</creatorcontrib><creatorcontrib>Nickel, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Presser, V.</au><au>Schultheiß, S.</au><au>Berthold, C.</au><au>Nickel, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>6</volume><issue>3</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>The spines of pencil and lance urchins
Heterocentrotus mammillatus and
Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using
X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1672-6529(08)60125-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6529 |
ispartof | Journal of bionics engineering, 2009-09, Vol.6 (3), p.203-213 |
issn | 1672-6529 2543-2141 |
language | eng |
recordid | cdi_proquest_miscellaneous_754881025 |
source | Elsevier; Springer Nature |
subjects | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology biomimetic calcite compression Echinoidea Engineering mechanical behavior Phyllacanthus imperialis sea urchin spines |
title | Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20Urchin%20Spines%20as%20a%20Model-System%20for%20Permeable,%20Light-Weight%20Ceramics%20with%20Graceful%20Failure%20Behavior.%20Part%20I.%20Mechanical%20Behavior%20of%20Sea%20Urchin%20Spines%20under%20Compression&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Presser,%20V.&rft.date=2009-09-01&rft.volume=6&rft.issue=3&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1016/S1672-6529(08)60125-0&rft_dat=%3Cproquest_cross%3E754881025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35047189&rft_id=info:pmid/&rfr_iscdi=true |