Loading…

Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression

The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bear...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bionics engineering 2009-09, Vol.6 (3), p.203-213
Main Authors: Presser, V., Schultheiß, S., Berthold, C., Nickel, K.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3
cites cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3
container_end_page 213
container_issue 3
container_start_page 203
container_title Journal of bionics engineering
container_volume 6
creator Presser, V.
Schultheiß, S.
Berthold, C.
Nickel, K.G.
description The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.
doi_str_mv 10.1016/S1672-6529(08)60125-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754881025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1672652908601250</els_id><sourcerecordid>754881025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</originalsourceid><addsrcrecordid>eNqFkd9qFDEUxoMouFYfQciVf8BZk8xkJnslutha2GJhLV6G08yZTspMsj2ZqfSZfEmzXemNYEPgcJLf95GTj7HXUiylkPXHrawbVdRard4J874WUulCPGELpauyULKST9niAXnOXqR0LYReKVMu2O8tAr8g1_vAtzsfMHHIm5_FFodie5cmHHkXiZ8jjQiXA37gG3_VT8VP3Be-RoLRu8R_-annJwQOu3ngx-CHmZB_wR5ufaQlPwea-OmSn6HrIXgHw8Mljx3_9x1zaJH4Oo47wpR8DC_Zsw6GhK_-1iN2cfz1x_pbsfl-crr-vClcpc1UYB61dNg42WptQArVVAAKla7LCrpaG12WXb3at06BNNi1Cl0-a_K67Moj9vbgu6N4M2Oa7OiTw2GAgHFOttGVMdlWZ_LNf8lSi6qRZpVBfQAdxZQIO7sjPwLdWSnsPkR7H6LdJ2SFsfchWpF19UGXMh-ukOx1nCnk6R8VfjoIMX_Urc_C5DwGh60ndJNto3_E4Q8gILUd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35047189</pqid></control><display><type>article</type><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><source>Elsevier</source><source>Springer Nature</source><creator>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</creator><creatorcontrib>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</creatorcontrib><description>The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1016/S1672-6529(08)60125-0</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; biomimetic ; calcite ; compression ; Echinoidea ; Engineering ; mechanical behavior ; Phyllacanthus imperialis ; sea urchin spines</subject><ispartof>Journal of bionics engineering, 2009-09, Vol.6 (3), p.203-213</ispartof><rights>2009 Jilin University</rights><rights>Jilin University 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</citedby><cites>FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Presser, V.</creatorcontrib><creatorcontrib>Schultheiß, S.</creatorcontrib><creatorcontrib>Berthold, C.</creatorcontrib><creatorcontrib>Nickel, K.G.</creatorcontrib><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>biomimetic</subject><subject>calcite</subject><subject>compression</subject><subject>Echinoidea</subject><subject>Engineering</subject><subject>mechanical behavior</subject><subject>Phyllacanthus imperialis</subject><subject>sea urchin spines</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkd9qFDEUxoMouFYfQciVf8BZk8xkJnslutha2GJhLV6G08yZTspMsj2ZqfSZfEmzXemNYEPgcJLf95GTj7HXUiylkPXHrawbVdRard4J874WUulCPGELpauyULKST9niAXnOXqR0LYReKVMu2O8tAr8g1_vAtzsfMHHIm5_FFodie5cmHHkXiZ8jjQiXA37gG3_VT8VP3Be-RoLRu8R_-annJwQOu3ngx-CHmZB_wR5ufaQlPwea-OmSn6HrIXgHw8Mljx3_9x1zaJH4Oo47wpR8DC_Zsw6GhK_-1iN2cfz1x_pbsfl-crr-vClcpc1UYB61dNg42WptQArVVAAKla7LCrpaG12WXb3at06BNNi1Cl0-a_K67Moj9vbgu6N4M2Oa7OiTw2GAgHFOttGVMdlWZ_LNf8lSi6qRZpVBfQAdxZQIO7sjPwLdWSnsPkR7H6LdJ2SFsfchWpF19UGXMh-ukOx1nCnk6R8VfjoIMX_Urc_C5DwGh60ndJNto3_E4Q8gILUd</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Presser, V.</creator><creator>Schultheiß, S.</creator><creator>Berthold, C.</creator><creator>Nickel, K.G.</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>7QP</scope><scope>P64</scope></search><sort><creationdate>20090901</creationdate><title>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</title><author>Presser, V. ; Schultheiß, S. ; Berthold, C. ; Nickel, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>biomimetic</topic><topic>calcite</topic><topic>compression</topic><topic>Echinoidea</topic><topic>Engineering</topic><topic>mechanical behavior</topic><topic>Phyllacanthus imperialis</topic><topic>sea urchin spines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Presser, V.</creatorcontrib><creatorcontrib>Schultheiß, S.</creatorcontrib><creatorcontrib>Berthold, C.</creatorcontrib><creatorcontrib>Nickel, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Presser, V.</au><au>Schultheiß, S.</au><au>Berthold, C.</au><au>Nickel, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>6</volume><issue>3</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction (“stereom”) of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1672-6529(08)60125-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-6529
ispartof Journal of bionics engineering, 2009-09, Vol.6 (3), p.203-213
issn 1672-6529
2543-2141
language eng
recordid cdi_proquest_miscellaneous_754881025
source Elsevier; Springer Nature
subjects Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
biomimetic
calcite
compression
Echinoidea
Engineering
mechanical behavior
Phyllacanthus imperialis
sea urchin spines
title Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20Urchin%20Spines%20as%20a%20Model-System%20for%20Permeable,%20Light-Weight%20Ceramics%20with%20Graceful%20Failure%20Behavior.%20Part%20I.%20Mechanical%20Behavior%20of%20Sea%20Urchin%20Spines%20under%20Compression&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Presser,%20V.&rft.date=2009-09-01&rft.volume=6&rft.issue=3&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1016/S1672-6529(08)60125-0&rft_dat=%3Cproquest_cross%3E754881025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-e6723ce7c1d558a10274aa2e25634af658533f695634c2a18efd2ec33f7777bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35047189&rft_id=info:pmid/&rfr_iscdi=true