Loading…

Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles

Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation...

Full description

Saved in:
Bibliographic Details
Published in:Applied magnetic resonance 2005-03, Vol.29 (1), p.107-122
Main Authors: Il’yasov, K. A., Barta, G., Kreher, B. W., Bellemann, M. E., Hennig, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3
cites cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3
container_end_page 122
container_issue 1
container_start_page 107
container_title Applied magnetic resonance
container_volume 29
creator Il’yasov, K. A.
Barta, G.
Kreher, B. W.
Bellemann, M. E.
Hennig, J.
description Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.
doi_str_mv 10.1007/BF03166958
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754889403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917913839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWP9c_AQBD4KwmnQ2m-xRxWqh4EXPSzY7KVu3SZtkRb-9KS0InoY378djhkfIFWd3nDF5_zhjwKuqFuqITHjFoZCCyWMyYTXIooZSnpKzGFeMcaG4nJDv-XrjQ9LOIPWW4rc2qS0SuugDNXow46BT7x21WW9H7VKf8uILaddbO8addaD7tV72bkm162gK2nzuRM50OAbv9EBt32Kg7ei6AeMFObF6iHh5mOfkY_b8_vRaLN5e5k8Pi8JwqKBorcrfCKZbMKAqprlCFLxFUN20kiDQAjAja6GrkokSTKmhxGxK7DIL5-Rmn7sJfjtiTM26jwaHQTv0Y2ykKJWqSwaZvP5HrvwY8uGxmdZc1hwU1Jm63VMm-BgD2mYT8ufhp-Gs2XXQ_HUAvzP0ejI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917913839</pqid></control><display><type>article</type><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</creator><creatorcontrib>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</creatorcontrib><description>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/BF03166958</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Anisotropy ; Brain ; Data acquisition ; Eigenvectors ; Errors ; Magnetic resonance imaging ; Mathematical analysis ; Noise levels ; Scanners ; Tensors ; Tracking</subject><ispartof>Applied magnetic resonance, 2005-03, Vol.29 (1), p.107-122</ispartof><rights>Springer 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</citedby><cites>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Il’yasov, K. A.</creatorcontrib><creatorcontrib>Barta, G.</creatorcontrib><creatorcontrib>Kreher, B. W.</creatorcontrib><creatorcontrib>Bellemann, M. E.</creatorcontrib><creatorcontrib>Hennig, J.</creatorcontrib><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><title>Applied magnetic resonance</title><description>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</description><subject>Anisotropy</subject><subject>Brain</subject><subject>Data acquisition</subject><subject>Eigenvectors</subject><subject>Errors</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Noise levels</subject><subject>Scanners</subject><subject>Tensors</subject><subject>Tracking</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkU9LAzEQxYMoWP9c_AQBD4KwmnQ2m-xRxWqh4EXPSzY7KVu3SZtkRb-9KS0InoY378djhkfIFWd3nDF5_zhjwKuqFuqITHjFoZCCyWMyYTXIooZSnpKzGFeMcaG4nJDv-XrjQ9LOIPWW4rc2qS0SuugDNXow46BT7x21WW9H7VKf8uILaddbO8addaD7tV72bkm162gK2nzuRM50OAbv9EBt32Kg7ei6AeMFObF6iHh5mOfkY_b8_vRaLN5e5k8Pi8JwqKBorcrfCKZbMKAqprlCFLxFUN20kiDQAjAja6GrkokSTKmhxGxK7DIL5-Rmn7sJfjtiTM26jwaHQTv0Y2ykKJWqSwaZvP5HrvwY8uGxmdZc1hwU1Jm63VMm-BgD2mYT8ufhp-Gs2XXQ_HUAvzP0ejI</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Il’yasov, K. A.</creator><creator>Barta, G.</creator><creator>Kreher, B. W.</creator><creator>Bellemann, M. E.</creator><creator>Hennig, J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TK</scope></search><sort><creationdate>20050301</creationdate><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><author>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropy</topic><topic>Brain</topic><topic>Data acquisition</topic><topic>Eigenvectors</topic><topic>Errors</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Noise levels</topic><topic>Scanners</topic><topic>Tensors</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Il’yasov, K. A.</creatorcontrib><creatorcontrib>Barta, G.</creatorcontrib><creatorcontrib>Kreher, B. W.</creatorcontrib><creatorcontrib>Bellemann, M. E.</creatorcontrib><creatorcontrib>Hennig, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Neurosciences Abstracts</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Il’yasov, K. A.</au><au>Barta, G.</au><au>Kreher, B. W.</au><au>Bellemann, M. E.</au><au>Hennig, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</atitle><jtitle>Applied magnetic resonance</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>29</volume><issue>1</issue><spage>107</spage><epage>122</epage><pages>107-122</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF03166958</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2005-03, Vol.29 (1), p.107-122
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_miscellaneous_754889403
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Anisotropy
Brain
Data acquisition
Eigenvectors
Errors
Magnetic resonance imaging
Mathematical analysis
Noise levels
Scanners
Tensors
Tracking
title Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20of%20exactb-tensor%20calculation%20for%20quantitative%20diffusion%20tensor%20imaging%20and%20tracking%20of%20neuronal%20fiber%20bundles&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Il%E2%80%99yasov,%20K.%20A.&rft.date=2005-03-01&rft.volume=29&rft.issue=1&rft.spage=107&rft.epage=122&rft.pages=107-122&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/BF03166958&rft_dat=%3Cproquest_cross%3E2917913839%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917913839&rft_id=info:pmid/&rfr_iscdi=true