Loading…
Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles
Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation...
Saved in:
Published in: | Applied magnetic resonance 2005-03, Vol.29 (1), p.107-122 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3 |
container_end_page | 122 |
container_issue | 1 |
container_start_page | 107 |
container_title | Applied magnetic resonance |
container_volume | 29 |
creator | Il’yasov, K. A. Barta, G. Kreher, B. W. Bellemann, M. E. Hennig, J. |
description | Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols. |
doi_str_mv | 10.1007/BF03166958 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754889403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917913839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWP9c_AQBD4KwmnQ2m-xRxWqh4EXPSzY7KVu3SZtkRb-9KS0InoY378djhkfIFWd3nDF5_zhjwKuqFuqITHjFoZCCyWMyYTXIooZSnpKzGFeMcaG4nJDv-XrjQ9LOIPWW4rc2qS0SuugDNXow46BT7x21WW9H7VKf8uILaddbO8addaD7tV72bkm162gK2nzuRM50OAbv9EBt32Kg7ei6AeMFObF6iHh5mOfkY_b8_vRaLN5e5k8Pi8JwqKBorcrfCKZbMKAqprlCFLxFUN20kiDQAjAja6GrkokSTKmhxGxK7DIL5-Rmn7sJfjtiTM26jwaHQTv0Y2ykKJWqSwaZvP5HrvwY8uGxmdZc1hwU1Jm63VMm-BgD2mYT8ufhp-Gs2XXQ_HUAvzP0ejI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917913839</pqid></control><display><type>article</type><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</creator><creatorcontrib>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</creatorcontrib><description>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/BF03166958</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Anisotropy ; Brain ; Data acquisition ; Eigenvectors ; Errors ; Magnetic resonance imaging ; Mathematical analysis ; Noise levels ; Scanners ; Tensors ; Tracking</subject><ispartof>Applied magnetic resonance, 2005-03, Vol.29 (1), p.107-122</ispartof><rights>Springer 2005.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</citedby><cites>FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Il’yasov, K. A.</creatorcontrib><creatorcontrib>Barta, G.</creatorcontrib><creatorcontrib>Kreher, B. W.</creatorcontrib><creatorcontrib>Bellemann, M. E.</creatorcontrib><creatorcontrib>Hennig, J.</creatorcontrib><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><title>Applied magnetic resonance</title><description>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</description><subject>Anisotropy</subject><subject>Brain</subject><subject>Data acquisition</subject><subject>Eigenvectors</subject><subject>Errors</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Noise levels</subject><subject>Scanners</subject><subject>Tensors</subject><subject>Tracking</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkU9LAzEQxYMoWP9c_AQBD4KwmnQ2m-xRxWqh4EXPSzY7KVu3SZtkRb-9KS0InoY378djhkfIFWd3nDF5_zhjwKuqFuqITHjFoZCCyWMyYTXIooZSnpKzGFeMcaG4nJDv-XrjQ9LOIPWW4rc2qS0SuugDNXow46BT7x21WW9H7VKf8uILaddbO8addaD7tV72bkm162gK2nzuRM50OAbv9EBt32Kg7ei6AeMFObF6iHh5mOfkY_b8_vRaLN5e5k8Pi8JwqKBorcrfCKZbMKAqprlCFLxFUN20kiDQAjAja6GrkokSTKmhxGxK7DIL5-Rmn7sJfjtiTM26jwaHQTv0Y2ykKJWqSwaZvP5HrvwY8uGxmdZc1hwU1Jm63VMm-BgD2mYT8ufhp-Gs2XXQ_HUAvzP0ejI</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Il’yasov, K. A.</creator><creator>Barta, G.</creator><creator>Kreher, B. W.</creator><creator>Bellemann, M. E.</creator><creator>Hennig, J.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TK</scope></search><sort><creationdate>20050301</creationdate><title>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</title><author>Il’yasov, K. A. ; Barta, G. ; Kreher, B. W. ; Bellemann, M. E. ; Hennig, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropy</topic><topic>Brain</topic><topic>Data acquisition</topic><topic>Eigenvectors</topic><topic>Errors</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Noise levels</topic><topic>Scanners</topic><topic>Tensors</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Il’yasov, K. A.</creatorcontrib><creatorcontrib>Barta, G.</creatorcontrib><creatorcontrib>Kreher, B. W.</creatorcontrib><creatorcontrib>Bellemann, M. E.</creatorcontrib><creatorcontrib>Hennig, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Neurosciences Abstracts</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Il’yasov, K. A.</au><au>Barta, G.</au><au>Kreher, B. W.</au><au>Bellemann, M. E.</au><au>Hennig, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles</atitle><jtitle>Applied magnetic resonance</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>29</volume><issue>1</issue><spage>107</spage><epage>122</epage><pages>107-122</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF03166958</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9347 |
ispartof | Applied magnetic resonance, 2005-03, Vol.29 (1), p.107-122 |
issn | 0937-9347 1613-7507 |
language | eng |
recordid | cdi_proquest_miscellaneous_754889403 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Anisotropy Brain Data acquisition Eigenvectors Errors Magnetic resonance imaging Mathematical analysis Noise levels Scanners Tensors Tracking |
title | Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20of%20exactb-tensor%20calculation%20for%20quantitative%20diffusion%20tensor%20imaging%20and%20tracking%20of%20neuronal%20fiber%20bundles&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Il%E2%80%99yasov,%20K.%20A.&rft.date=2005-03-01&rft.volume=29&rft.issue=1&rft.spage=107&rft.epage=122&rft.pages=107-122&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/BF03166958&rft_dat=%3Cproquest_cross%3E2917913839%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1363-bf869550ab3c3860a18ee51be38d26735ef330c795a640543c4a34e8d27ed18e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917913839&rft_id=info:pmid/&rfr_iscdi=true |