Loading…
Experimental studies and modeling on concentration polarization in forward osmosis
Concentration polarization (CP) is an important issue in forward osmosis (FO) processes and it is believed that the coupled effect of dilutive internal CP (DICP) and concentrative external CP (CECP) limits FO flux. The objective of this study was to distinguish individual contribution of different t...
Saved in:
Published in: | Water science and technology 2010-01, Vol.61 (11), p.2897-2904 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Concentration polarization (CP) is an important issue in forward osmosis (FO) processes and it is believed that the coupled effect of dilutive internal CP (DICP) and concentrative external CP (CECP) limits FO flux. The objective of this study was to distinguish individual contribution of different types of DICP and CECP via modeling and to validate it by pilot studies. The influence of DICP/CECP on FO flux has been investigated in this study. The CP model presented in this work was derived from a previous study and evaluated by bench-scale FO experiments. Experiments were conducted with drinking water as the feed and NaCl/MgSO(4) as draw solutions at different concentrations and velocities. Modeling results indicated that DICP contributed to a flux reduction by 99.9% for 0.5 M NaCl as a draw solution although the flow pattern of both feed and draw solutions was turbulent. DICP could be improved via selection of the draw solution. The modeling results were well fit with the experimental data. It was concluded that the model could be used for selection of the draw solution and prediction of water flux under similar situation. A draw solution with greater diffusion coefficient or a thinner substrate of an asymmetric FO membrane resulted in a higher flux. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2010.078 |