Loading…

Reasoning as simulation

The theory that human cognition proceeds through mental simulations, if true, would provide a parsimonious explanation of how the mechanisms of reasoning and problem solving integrate with and develop from mechanisms underlying forms of cognition that occur earlier in evolution and development. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive processing 2009-11, Vol.10 (4), p.343-353
Main Authors: Cassimatis, Nicholas L., Murugesan, Arthi, Bignoli, Perrin G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3
cites cdi_FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3
container_end_page 353
container_issue 4
container_start_page 343
container_title Cognitive processing
container_volume 10
creator Cassimatis, Nicholas L.
Murugesan, Arthi
Bignoli, Perrin G.
description The theory that human cognition proceeds through mental simulations, if true, would provide a parsimonious explanation of how the mechanisms of reasoning and problem solving integrate with and develop from mechanisms underlying forms of cognition that occur earlier in evolution and development. However, questions remain about whether simulation mechanisms are powerful enough to exhibit human-level reasoning and inference. In order to investigate this issue, we show that it is possible to characterize some of the most powerful modern artificial intelligence algorithms for logical and probabilistic inference as methods of simulating alternate states of the world. We show that a set of specific human perceptual mechanisms, even if not implemented using mechanisms described in artificial intelligence, can nevertheless perform the same operations as those algorithms. Although this result does not demonstrate that simulation theory is true, it does show that whatever mechanisms underlie perception have at least as much power to explain non-perceptual human reasoning and problem solving as some of the most powerful known algorithms.
doi_str_mv 10.1007/s10339-009-0256-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754892475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754892475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQh4MotlbP4kV6UU-rk8fmcZTiCwqC6Dkku0nZso-adA_-96buUm89DDMw328GPoSuMNxjAPEQMVCqMoBUJOcZHKEp5phkTCg43s-STNBZjGsAooCyUzTBigghGJ-iyw9nYtdW7Wpu4jxWTV-bbdW15-jEmzq6i7HP0Nfz0-fiNVu-v7wtHpdZwYBts7Kk1ptSCsjBOSy8M8IyJbjEFlPpXMFtbn1uOZXCeMKlZ7l1jFqMHaeeztDdcHcTuu_exa1uqli4ujat6_qoRc6kIkzkibw9SHLOKaF_IB7AInQxBuf1JlSNCT8ag95504M3nbzpnTcNKXM9Hu9t48r_xCgqATcjYGJhah9MW1RxzxFCuVRYJI4MXEyrduWCXnd9aJPCA99_AXJig10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66632375</pqid></control><display><type>article</type><title>Reasoning as simulation</title><source>Springer Nature</source><creator>Cassimatis, Nicholas L. ; Murugesan, Arthi ; Bignoli, Perrin G.</creator><creatorcontrib>Cassimatis, Nicholas L. ; Murugesan, Arthi ; Bignoli, Perrin G.</creatorcontrib><description>The theory that human cognition proceeds through mental simulations, if true, would provide a parsimonious explanation of how the mechanisms of reasoning and problem solving integrate with and develop from mechanisms underlying forms of cognition that occur earlier in evolution and development. However, questions remain about whether simulation mechanisms are powerful enough to exhibit human-level reasoning and inference. In order to investigate this issue, we show that it is possible to characterize some of the most powerful modern artificial intelligence algorithms for logical and probabilistic inference as methods of simulating alternate states of the world. We show that a set of specific human perceptual mechanisms, even if not implemented using mechanisms described in artificial intelligence, can nevertheless perform the same operations as those algorithms. Although this result does not demonstrate that simulation theory is true, it does show that whatever mechanisms underlie perception have at least as much power to explain non-perceptual human reasoning and problem solving as some of the most powerful known algorithms.</description><identifier>ISSN: 1612-4782</identifier><identifier>EISSN: 1612-4790</identifier><identifier>DOI: 10.1007/s10339-009-0256-0</identifier><identifier>PMID: 19277746</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Behavioral Sciences ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Cognition - physiology ; Cognition. Intelligence ; Concept Formation - physiology ; Decision Making - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Logic ; Models, Psychological ; Neurosciences ; Perception - physiology ; Problem Solving - physiology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reasoning. Problem solving ; Research Report</subject><ispartof>Cognitive processing, 2009-11, Vol.10 (4), p.343-353</ispartof><rights>Marta Olivetti Belardinelli and Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3</citedby><cites>FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22368917$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19277746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassimatis, Nicholas L.</creatorcontrib><creatorcontrib>Murugesan, Arthi</creatorcontrib><creatorcontrib>Bignoli, Perrin G.</creatorcontrib><title>Reasoning as simulation</title><title>Cognitive processing</title><addtitle>Cogn Process</addtitle><addtitle>Cogn Process</addtitle><description>The theory that human cognition proceeds through mental simulations, if true, would provide a parsimonious explanation of how the mechanisms of reasoning and problem solving integrate with and develop from mechanisms underlying forms of cognition that occur earlier in evolution and development. However, questions remain about whether simulation mechanisms are powerful enough to exhibit human-level reasoning and inference. In order to investigate this issue, we show that it is possible to characterize some of the most powerful modern artificial intelligence algorithms for logical and probabilistic inference as methods of simulating alternate states of the world. We show that a set of specific human perceptual mechanisms, even if not implemented using mechanisms described in artificial intelligence, can nevertheless perform the same operations as those algorithms. Although this result does not demonstrate that simulation theory is true, it does show that whatever mechanisms underlie perception have at least as much power to explain non-perceptual human reasoning and problem solving as some of the most powerful known algorithms.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Behavioral Sciences</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cognition - physiology</subject><subject>Cognition. Intelligence</subject><subject>Concept Formation - physiology</subject><subject>Decision Making - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Logic</subject><subject>Models, Psychological</subject><subject>Neurosciences</subject><subject>Perception - physiology</subject><subject>Problem Solving - physiology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reasoning. Problem solving</subject><subject>Research Report</subject><issn>1612-4782</issn><issn>1612-4790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQh4MotlbP4kV6UU-rk8fmcZTiCwqC6Dkku0nZso-adA_-96buUm89DDMw328GPoSuMNxjAPEQMVCqMoBUJOcZHKEp5phkTCg43s-STNBZjGsAooCyUzTBigghGJ-iyw9nYtdW7Wpu4jxWTV-bbdW15-jEmzq6i7HP0Nfz0-fiNVu-v7wtHpdZwYBts7Kk1ptSCsjBOSy8M8IyJbjEFlPpXMFtbn1uOZXCeMKlZ7l1jFqMHaeeztDdcHcTuu_exa1uqli4ujat6_qoRc6kIkzkibw9SHLOKaF_IB7AInQxBuf1JlSNCT8ag95504M3nbzpnTcNKXM9Hu9t48r_xCgqATcjYGJhah9MW1RxzxFCuVRYJI4MXEyrduWCXnd9aJPCA99_AXJig10</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Cassimatis, Nicholas L.</creator><creator>Murugesan, Arthi</creator><creator>Bignoli, Perrin G.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20091101</creationdate><title>Reasoning as simulation</title><author>Cassimatis, Nicholas L. ; Murugesan, Arthi ; Bignoli, Perrin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Behavioral Sciences</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cognition - physiology</topic><topic>Cognition. Intelligence</topic><topic>Concept Formation - physiology</topic><topic>Decision Making - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Logic</topic><topic>Models, Psychological</topic><topic>Neurosciences</topic><topic>Perception - physiology</topic><topic>Problem Solving - physiology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reasoning. Problem solving</topic><topic>Research Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassimatis, Nicholas L.</creatorcontrib><creatorcontrib>Murugesan, Arthi</creatorcontrib><creatorcontrib>Bignoli, Perrin G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Cognitive processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassimatis, Nicholas L.</au><au>Murugesan, Arthi</au><au>Bignoli, Perrin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reasoning as simulation</atitle><jtitle>Cognitive processing</jtitle><stitle>Cogn Process</stitle><addtitle>Cogn Process</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>10</volume><issue>4</issue><spage>343</spage><epage>353</epage><pages>343-353</pages><issn>1612-4782</issn><eissn>1612-4790</eissn><abstract>The theory that human cognition proceeds through mental simulations, if true, would provide a parsimonious explanation of how the mechanisms of reasoning and problem solving integrate with and develop from mechanisms underlying forms of cognition that occur earlier in evolution and development. However, questions remain about whether simulation mechanisms are powerful enough to exhibit human-level reasoning and inference. In order to investigate this issue, we show that it is possible to characterize some of the most powerful modern artificial intelligence algorithms for logical and probabilistic inference as methods of simulating alternate states of the world. We show that a set of specific human perceptual mechanisms, even if not implemented using mechanisms described in artificial intelligence, can nevertheless perform the same operations as those algorithms. Although this result does not demonstrate that simulation theory is true, it does show that whatever mechanisms underlie perception have at least as much power to explain non-perceptual human reasoning and problem solving as some of the most powerful known algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19277746</pmid><doi>10.1007/s10339-009-0256-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-4782
ispartof Cognitive processing, 2009-11, Vol.10 (4), p.343-353
issn 1612-4782
1612-4790
language eng
recordid cdi_proquest_miscellaneous_754892475
source Springer Nature
subjects Algorithms
Artificial Intelligence
Behavioral Sciences
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Cognition - physiology
Cognition. Intelligence
Concept Formation - physiology
Decision Making - physiology
Fundamental and applied biological sciences. Psychology
Humans
Logic
Models, Psychological
Neurosciences
Perception - physiology
Problem Solving - physiology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reasoning. Problem solving
Research Report
title Reasoning as simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reasoning%20as%20simulation&rft.jtitle=Cognitive%20processing&rft.au=Cassimatis,%20Nicholas%20L.&rft.date=2009-11-01&rft.volume=10&rft.issue=4&rft.spage=343&rft.epage=353&rft.pages=343-353&rft.issn=1612-4782&rft.eissn=1612-4790&rft_id=info:doi/10.1007/s10339-009-0256-0&rft_dat=%3Cproquest_cross%3E754892475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-dd3bfad87050ee17fea7b497681b138eec6b5bf5b6387af268f45be43b11e63f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66632375&rft_id=info:pmid/19277746&rfr_iscdi=true