Loading…

Habitat Heterogeneity and Associated Microbial Community Structure in a Small-Scale Floodplain Hyporheic Flow Path

The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essenti...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2009-10, Vol.58 (3), p.611-620
Main Authors: Lowell, Jennifer L, Gordon, Nathan, Engstrom, Dale, Stanford, Jack A, Holben, William E, Gannon, James E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essential in fluvial biogeochemical cycling, riverine ecosystem productivity, and trophic interactions. Despite these functions, microbial community structure in pristine hyporheic systems is not well characterized. The current study was designed to assess whether physical habitat heterogeneity within the hyporheic zone of the Nyack floodplain was sufficient to drive bacterial β diversity between three different hyporheic flow path locations. Habitat heterogeneity was assessed by measuring soluble reactive phosphorous, nitrate, dissolved organic carbon, dissolved oxygen, and soluble total nitrogen levels seasonally at surface water infiltration, advection, and exfiltration zones. Significant spatial differences were detected in dissolved oxygen and nitrate levels, and seasonal differences were detected in dissolved oxygen, nitrate, and dissolved organic carbon levels. Denaturing gradient gel electrophoresis (DGGE) and cell counts indicated that bacterial diversity increased with abundance, and DGGE fingerprints covaried with nitrate levels where water infiltrated the hyporheic zone. The ribosomal gene phylogeny revealed that hyporheic habitat heterogeneity was sufficient to drive β diversity between bacterial assemblages. Phylogenetic (P) tests detected sequence disparity between the flow path locations. Small distinct lineages of Firmicutes, Actinomycetes, Planctomycetes, and Acidobacteria defined the infiltration zone and α- and β-proteobacterial lineages delineated the exfiltration and advection zone communities. These data suggest that spatial habitat heterogeneity drives hyporheic microbial community development and that attempts to understand functional differences between bacteria inhabiting nutritionally heterogeneous hyporheic environments might begin by focusing on the biology of these taxa.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-009-9525-9