Loading…

Influence of a mycorrhizal fungus and/or rhizobium on growth and biomass partitioning of subterranean clover exposed to ozone

The influence of soilborne symbionts such as rhizobia or mycorrhizal fungi on plant response to ozone (O3) has not been well defined. Leguminous plants in the field are infected by both types of organisms, which influence plant nutrition and growth. We studied the effects of infection withRhizobium...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution air, and soil pollution, 1997-05, Vol.96 (1-4), p.233-248
Main Authors: Miller, J.E. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Forestry), Shafer, S.R, Schoeneberger, M.M, Pursley, W.A, Horton, S.J, Davey, C.B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of soilborne symbionts such as rhizobia or mycorrhizal fungi on plant response to ozone (O3) has not been well defined. Leguminous plants in the field are infected by both types of organisms, which influence plant nutrition and growth. We studied the effects of infection withRhizobium leguminosarum biovartrifolii and/orGigaspora margarita on response of subterranean clover (Trifolium subterraneum L. cv Mt. Barker) to O3. Exposures were conducted in greenhouse CSTR chambers using four O3 concentrations [charcoal-filtered (CF), 50, 100, or 150 ppb; 6 h day−1, 5 day wk−1 for 12 weeks] as main plots (replicated). Four inoculum types were subplot treatments, i.e., inoculated with one, both, or neither microorganisms. At 2-wk intervals, plants were exposed to14CO2 and harvested 24 h later for determination of biomass and14C content of shoots and roots. Ozone at 100 or 150 ppb suppressed clover growth during the experiment. Inoculation withG. margarita alone suppressed clover growth by the last two harvests, whereasR. leguminosarum alone enhanced growth during this time period. When both symbionts were present, the plants grew similarly to the noninoculated controls. Shoot/root ratios were increased by 100 or 150 ppb O3 compared to that for CF-treated plants. Shoot/root ratios were greater for all inoculated plants compared to noninoculated controls. Under low O3 stress (CF or 50 ppb), plants inoculated with bothR. leguminosarum andG. margarita transported a greater proportion of recent photosynthate (14C) to roots than did noninoculated plants; we attribute this to metabolic requirements of the microorganisms. At the highest level of O3 stress (150 ppb), this did not occur, probably because little photosynthate was available and the shoots retained most of it for repair of injury. Statistically significant interactions occurred between O3 and inoculum types for shoot and total biomass. When averaged across harvests, 50 ppb O3 suppressed biomass in the plants inoculated withG. margarita alone. Apparently, the mycorrhizal fungus is such a significant C drain that even a small amount of O3 stress suppresses plant growth under these conditions.
ISSN:0049-6979
1573-2932
DOI:10.1007/BF02407207