Loading…

Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene

We report on a statistical analysis of a large set of radiocarbon dates for reconstruction of paleoclimate. Probability density functions were constructed by summing the probability distributions of individual 14C dates. Our analysis was based on 2 assumptions: 1) The amount of organic matter in sed...

Full description

Saved in:
Bibliographic Details
Published in:Radiocarbon 2004, Vol.46 (2), p.733-744
Main Authors: Michczyńska, Danuta J, Pazdur, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on a statistical analysis of a large set of radiocarbon dates for reconstruction of paleoclimate. Probability density functions were constructed by summing the probability distributions of individual 14C dates. Our analysis was based on 2 assumptions: 1) The amount of organic matter in sediments depends on paleogeographical conditions; 2) The number of 14C-dated samples is proportional to the amount of organic matter deposited in sediments in the examined time intervals. We quantified how many dates are required to give statistically reliable results. As an example, 785 peat dates from Poland were selected. The dates encompassed the Holocene and Late Glacial period. All dates came from the Gliwice Radiocarbon Laboratory. Results were compared with other paleoenvironmental records. Detailed analysis of the frequency distributions showed that preferential sampling plays an important part in the shape determination. The general rule to take samples from locations where visible changes of sedimentation are apparent (e.g. from the top and the bottom of the peat layer) results in narrow peaks in the probability density function near the limits of the Holocene subdivision.
ISSN:0033-8222
1945-5755
DOI:10.1017/S0033822200035773