Loading…

Evaluation of Polyvinylpyrrolidone as a Cryoprotectant for Adipose Tissue-Derived Adult Stem Cells

The objective of this study was to test the hypothesis that human adipose tissue-derived adult stem cells (ASCs) can be effectively cryopreserved and stored in liquid nitrogen using a freezing medium containing a high-molecular-weight polymer, polyvinylpyrrolidone (PVP), as the cryoprotective agent...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part C, Methods Methods, 2010-08, Vol.16 (4), p.783-792
Main Authors: Thirumala, Sreedhar, Wu, Xiying, Gimble, Jeffrey M., Devireddy, Ram V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to test the hypothesis that human adipose tissue-derived adult stem cells (ASCs) can be effectively cryopreserved and stored in liquid nitrogen using a freezing medium containing a high-molecular-weight polymer, polyvinylpyrrolidone (PVP), as the cryoprotective agent (CPA) instead of dimethylsulfoxide (DMSO). To this end we investigated the postfreeze/thaw viability and apoptotic behavior of passage 1 ASCs cryopreserved in 15 different media: (i) the traditional media containing Dulbecco's modified Eagle's medium (DMEM) with 80% fetal calf serum (FCS) and 10% DMSO; (ii) DMEM with 80% human serum (HS) and 10% DMSO; (iii) DMEM with various concentrations (1%, 5%, 10%, 20%, and 40%) of PVP as the sole CPA; (iv) DMEM with PVP (5%, 10%, and 20%) and HS (10%); (v) DMEM with PVP (5%, 10%, and 20%) and FCS (10%); and (vi) DMEM with PVP (10%) and FCS (40% and 80%). Approximately 1 mL (10 6 cells/mL) of passage 1 ASCs were frozen overnight in a −80°C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37°C water bath (1–2 min of agitation), resuspended in culture media, and seeded in separate wells of a six-well plate for a 24-h incubation period at 37°C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 10% PVP and DMEM was comparable with that obtained in freezing media with DMSO and serum (HS or FCS), that is, ∼70% ± 8% and ∼83% ± 8%, respectively. Slightly enhanced cell viability was observed with the addition of serum (either HS or FCS) to the freezing media containing PVP as the CPA. Adipogenic and osteogenic differentiation behaviors of the frozen thawed cells were also assessed using histochemical staining and optical density measurements and the expression of adipogenic-associated genes was analyzed using reverse transcription–polymerase chain reaction. Our results suggest that after thawing, ASC viability and adipogenic and osteogenic differentiation abilities can be maintained even when ASCs are frozen in the absence of serum but with 10% PVP in DMEM.
ISSN:1937-3384
1937-3392
DOI:10.1089/ten.tec.2009.0552