Loading…
Fast live simultaneous multiwavelength four-dimensional optical microscopy
Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (37), p.16016-16022 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43 |
---|---|
cites | cdi_FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43 |
container_end_page | 16022 |
container_issue | 37 |
container_start_page | 16016 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Carlton, Peter M. Boulanger, Jérôme Kervrann, Charles Sibarita, Jean-Baptiste Salamero, Jean Gordon-Messer, Susannah Bressan, Debra Haber, James E. Haase, Sebastian Shao, Lin Winoto, Lukman Matsuda, Atsushi Kner, Peter Uzawa, Satoru Gustafsson, Mats Kam, Zvi Agard, David A. Sedat, John W. |
description | Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to sub-diffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading. |
doi_str_mv | 10.1073/pnas.1004037107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_755159982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779608</jstor_id><sourcerecordid>20779608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2Kqiy0555AUS8cUMr4K7YvSAjx0WqlXtqz5fU6rFdJHOxkK_57HGULlNOMxr95tt9D6CuG7xgEveg7k3IHDKjIgw9ogUHhsmIKDtACgIhSMsIO0VFKWwBQXMIndEhAAJdKLdDPW5OGovE7VyTfjs1gOhfGVEyt_2t2rnHdw7Ap6jDGcu1b1yUfOtMUoR-8zbX1NoZkQ__0GX2sTZPcl309Rn9ub35f35fLX3c_rq-WpeWVHEqydpwRxYEaVSupKmstsYTWFq-EMKxec255nqywFSCNNAavTIWdspg5x-gxupx1-3HVurV13RBNo_voWxOfdDBe_3_S-Y1-CDtNFMOU4ixwPgts3q3dXy2176I3GoAzUELuJvpsf10Mj6NLg259sq5pZqe04BxzpSTJ5Ld35Da7ls2aIMywYFRl6GKGJttSdPXLCzDoKVM9ZapfM80bp2__-8L_CzEDxR6YNl_lhKZC4wpwlZGTGdmmIcS3EkJVIOkzs6Sy7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751417439</pqid></control><display><type>article</type><title>Fast live simultaneous multiwavelength four-dimensional optical microscopy</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Carlton, Peter M. ; Boulanger, Jérôme ; Kervrann, Charles ; Sibarita, Jean-Baptiste ; Salamero, Jean ; Gordon-Messer, Susannah ; Bressan, Debra ; Haber, James E. ; Haase, Sebastian ; Shao, Lin ; Winoto, Lukman ; Matsuda, Atsushi ; Kner, Peter ; Uzawa, Satoru ; Gustafsson, Mats ; Kam, Zvi ; Agard, David A. ; Sedat, John W.</creator><creatorcontrib>Carlton, Peter M. ; Boulanger, Jérôme ; Kervrann, Charles ; Sibarita, Jean-Baptiste ; Salamero, Jean ; Gordon-Messer, Susannah ; Bressan, Debra ; Haber, James E. ; Haase, Sebastian ; Shao, Lin ; Winoto, Lukman ; Matsuda, Atsushi ; Kner, Peter ; Uzawa, Satoru ; Gustafsson, Mats ; Kam, Zvi ; Agard, David A. ; Sedat, John W.</creatorcontrib><description>Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to sub-diffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1004037107</identifier><identifier>PMID: 20705899</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Animals ; Biological Sciences ; Cell cycle ; Cell division ; Cell Survival ; Cellular Biology ; Chromosomes ; Computer Science ; Drosophila melanogaster - cytology ; Fluorescence ; Image Processing ; Imaging ; Life Sciences ; Luminous intensity ; Microscopy ; Microscopy, Fluorescence - methods ; Optics ; Phototoxicity ; Physics ; Saccharomyces cerevisiae - cytology ; Signal noise ; Software ; Viability ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16016-16022</ispartof><rights>Copyright National Academy of Sciences Sep 14, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43</citedby><cites>FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43</cites><orcidid>0000-0001-6263-0452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779608$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20705899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00540978$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlton, Peter M.</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Kervrann, Charles</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Salamero, Jean</creatorcontrib><creatorcontrib>Gordon-Messer, Susannah</creatorcontrib><creatorcontrib>Bressan, Debra</creatorcontrib><creatorcontrib>Haber, James E.</creatorcontrib><creatorcontrib>Haase, Sebastian</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Winoto, Lukman</creatorcontrib><creatorcontrib>Matsuda, Atsushi</creatorcontrib><creatorcontrib>Kner, Peter</creatorcontrib><creatorcontrib>Uzawa, Satoru</creatorcontrib><creatorcontrib>Gustafsson, Mats</creatorcontrib><creatorcontrib>Kam, Zvi</creatorcontrib><creatorcontrib>Agard, David A.</creatorcontrib><creatorcontrib>Sedat, John W.</creatorcontrib><title>Fast live simultaneous multiwavelength four-dimensional optical microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to sub-diffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Survival</subject><subject>Cellular Biology</subject><subject>Chromosomes</subject><subject>Computer Science</subject><subject>Drosophila melanogaster - cytology</subject><subject>Fluorescence</subject><subject>Image Processing</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Luminous intensity</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Optics</subject><subject>Phototoxicity</subject><subject>Physics</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Signal noise</subject><subject>Software</subject><subject>Viability</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2Kqiy0555AUS8cUMr4K7YvSAjx0WqlXtqz5fU6rFdJHOxkK_57HGULlNOMxr95tt9D6CuG7xgEveg7k3IHDKjIgw9ogUHhsmIKDtACgIhSMsIO0VFKWwBQXMIndEhAAJdKLdDPW5OGovE7VyTfjs1gOhfGVEyt_2t2rnHdw7Ap6jDGcu1b1yUfOtMUoR-8zbX1NoZkQ__0GX2sTZPcl309Rn9ub35f35fLX3c_rq-WpeWVHEqydpwRxYEaVSupKmstsYTWFq-EMKxec255nqywFSCNNAavTIWdspg5x-gxupx1-3HVurV13RBNo_voWxOfdDBe_3_S-Y1-CDtNFMOU4ixwPgts3q3dXy2176I3GoAzUELuJvpsf10Mj6NLg259sq5pZqe04BxzpSTJ5Ld35Da7ls2aIMywYFRl6GKGJttSdPXLCzDoKVM9ZapfM80bp2__-8L_CzEDxR6YNl_lhKZC4wpwlZGTGdmmIcS3EkJVIOkzs6Sy7g</recordid><startdate>20100914</startdate><enddate>20100914</enddate><creator>Carlton, Peter M.</creator><creator>Boulanger, Jérôme</creator><creator>Kervrann, Charles</creator><creator>Sibarita, Jean-Baptiste</creator><creator>Salamero, Jean</creator><creator>Gordon-Messer, Susannah</creator><creator>Bressan, Debra</creator><creator>Haber, James E.</creator><creator>Haase, Sebastian</creator><creator>Shao, Lin</creator><creator>Winoto, Lukman</creator><creator>Matsuda, Atsushi</creator><creator>Kner, Peter</creator><creator>Uzawa, Satoru</creator><creator>Gustafsson, Mats</creator><creator>Kam, Zvi</creator><creator>Agard, David A.</creator><creator>Sedat, John W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6263-0452</orcidid></search><sort><creationdate>20100914</creationdate><title>Fast live simultaneous multiwavelength four-dimensional optical microscopy</title><author>Carlton, Peter M. ; Boulanger, Jérôme ; Kervrann, Charles ; Sibarita, Jean-Baptiste ; Salamero, Jean ; Gordon-Messer, Susannah ; Bressan, Debra ; Haber, James E. ; Haase, Sebastian ; Shao, Lin ; Winoto, Lukman ; Matsuda, Atsushi ; Kner, Peter ; Uzawa, Satoru ; Gustafsson, Mats ; Kam, Zvi ; Agard, David A. ; Sedat, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Survival</topic><topic>Cellular Biology</topic><topic>Chromosomes</topic><topic>Computer Science</topic><topic>Drosophila melanogaster - cytology</topic><topic>Fluorescence</topic><topic>Image Processing</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Luminous intensity</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Optics</topic><topic>Phototoxicity</topic><topic>Physics</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Signal noise</topic><topic>Software</topic><topic>Viability</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlton, Peter M.</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Kervrann, Charles</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Salamero, Jean</creatorcontrib><creatorcontrib>Gordon-Messer, Susannah</creatorcontrib><creatorcontrib>Bressan, Debra</creatorcontrib><creatorcontrib>Haber, James E.</creatorcontrib><creatorcontrib>Haase, Sebastian</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Winoto, Lukman</creatorcontrib><creatorcontrib>Matsuda, Atsushi</creatorcontrib><creatorcontrib>Kner, Peter</creatorcontrib><creatorcontrib>Uzawa, Satoru</creatorcontrib><creatorcontrib>Gustafsson, Mats</creatorcontrib><creatorcontrib>Kam, Zvi</creatorcontrib><creatorcontrib>Agard, David A.</creatorcontrib><creatorcontrib>Sedat, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlton, Peter M.</au><au>Boulanger, Jérôme</au><au>Kervrann, Charles</au><au>Sibarita, Jean-Baptiste</au><au>Salamero, Jean</au><au>Gordon-Messer, Susannah</au><au>Bressan, Debra</au><au>Haber, James E.</au><au>Haase, Sebastian</au><au>Shao, Lin</au><au>Winoto, Lukman</au><au>Matsuda, Atsushi</au><au>Kner, Peter</au><au>Uzawa, Satoru</au><au>Gustafsson, Mats</au><au>Kam, Zvi</au><au>Agard, David A.</au><au>Sedat, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast live simultaneous multiwavelength four-dimensional optical microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-14</date><risdate>2010</risdate><volume>107</volume><issue>37</issue><spage>16016</spage><epage>16022</epage><pages>16016-16022</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to sub-diffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20705899</pmid><doi>10.1073/pnas.1004037107</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6263-0452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16016-16022 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_755159982 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Algorithms Animals Biological Sciences Cell cycle Cell division Cell Survival Cellular Biology Chromosomes Computer Science Drosophila melanogaster - cytology Fluorescence Image Processing Imaging Life Sciences Luminous intensity Microscopy Microscopy, Fluorescence - methods Optics Phototoxicity Physics Saccharomyces cerevisiae - cytology Signal noise Software Viability Yeast Yeasts |
title | Fast live simultaneous multiwavelength four-dimensional optical microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20live%20simultaneous%20multiwavelength%20four-dimensional%20optical%20microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carlton,%20Peter%20M.&rft.date=2010-09-14&rft.volume=107&rft.issue=37&rft.spage=16016&rft.epage=16022&rft.pages=16016-16022&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1004037107&rft_dat=%3Cjstor_proqu%3E20779608%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-2de5429503a9f9896ccc2c23fc1b77a4fd55c52c2b1c708a8aa1ba61e9c14ee43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751417439&rft_id=info:pmid/20705899&rft_jstor_id=20779608&rfr_iscdi=true |