Loading…
Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond
The interactions between the constituent monomers of fibrin, the polymerized protein network that provides the structural stability of blood clots, are frequently under stress because of the dynamic nature of blood flow. Herein, the calcium dependence of the structural unfolding linked to the forced...
Saved in:
Published in: | Langmuir 2010-09, Vol.26 (18), p.14716-14722 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213 |
---|---|
cites | cdi_FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213 |
container_end_page | 14722 |
container_issue | 18 |
container_start_page | 14716 |
container_title | Langmuir |
container_volume | 26 |
creator | Averett, Laurel E Akhremitchev, Boris B Schoenfisch, Mark H Gorkun, Oleg V |
description | The interactions between the constituent monomers of fibrin, the polymerized protein network that provides the structural stability of blood clots, are frequently under stress because of the dynamic nature of blood flow. Herein, the calcium dependence of the structural unfolding linked to the forced dissociation of the “A−a” knob−hole bond between fibrin monomers is reported. The presence of calcium was shown to influence the incidence of the last event in the unfolding pattern characteristic of “A−a” rupture. This effect, attributed to the function of the γ1 calcium-binding site, was found to be reversible and specific. Our results indicate that binding of calcium at the γ1 site has no effect on the strength of the knob−hole bond prior to unfolding of the hole-containing γ module. Rather, calcium bound at the γ1 site makes the structure of the hole more resilient to such forced unfolding, leading to survival of the “A−a” knob−hole bond during larger extensions of the fibrinogen molecule but at the cost of rupture of the bond at lower forces. |
doi_str_mv | 10.1021/la1017664 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755161002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755161002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213</originalsourceid><addsrcrecordid>eNptkbFuFDEQhi0EIkeg4AWQG4RSLHjs9TqmOy4cRArQJPVqzp5NHO3ay3q3SJeSFmp4Ct6Dh7gnYeGS0FCNNPP9nzQzjD0F8RKEhFctggBTVeU9tgAtRaEPpbnPFsKUqjBlpfbYo5wvhRBWlfYh25PCKFDKLtjXFbYuTB0_op6ip-iIp4avw2YIkX_EmDpyFxiDy6_56QXxXz-B32Y-kA84UubjPDiLTWp9iOf_8umcIj-OfnLk-eaKr9Mw65d934a5Maa_ue319-X2yzfcXv_gb1L0j9mDBttMT27qPjtbvz1dvS9OPr07Xi1PClSHYiwqkq5B1BtnhfdeClEBCFWiNxZIokFjpQVD1jpyHrUuibwsUYPSUoLaZy923n5InyfKY92F7KhtMVKacm20hgqEkDN5sCPdkHIeqKn7IXQ4XNUg6j8PqO8eMLPPbqzTpiN_R95efAae7wB0ub5M0xDnJf8j-g11x48e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755161002</pqid></control><display><type>article</type><title>Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Averett, Laurel E ; Akhremitchev, Boris B ; Schoenfisch, Mark H ; Gorkun, Oleg V</creator><creatorcontrib>Averett, Laurel E ; Akhremitchev, Boris B ; Schoenfisch, Mark H ; Gorkun, Oleg V</creatorcontrib><description>The interactions between the constituent monomers of fibrin, the polymerized protein network that provides the structural stability of blood clots, are frequently under stress because of the dynamic nature of blood flow. Herein, the calcium dependence of the structural unfolding linked to the forced dissociation of the “A−a” knob−hole bond between fibrin monomers is reported. The presence of calcium was shown to influence the incidence of the last event in the unfolding pattern characteristic of “A−a” rupture. This effect, attributed to the function of the γ1 calcium-binding site, was found to be reversible and specific. Our results indicate that binding of calcium at the γ1 site has no effect on the strength of the knob−hole bond prior to unfolding of the hole-containing γ module. Rather, calcium bound at the γ1 site makes the structure of the hole more resilient to such forced unfolding, leading to survival of the “A−a” knob−hole bond during larger extensions of the fibrinogen molecule but at the cost of rupture of the bond at lower forces.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la1017664</identifier><identifier>PMID: 20731339</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials ; Biomechanical Phenomena ; Calcium - metabolism ; Fibrin - chemistry ; Fibrin - metabolism ; Fibrinogen - chemistry ; Fibrinogen - metabolism ; Humans ; Microscopy, Atomic Force ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Unfolding</subject><ispartof>Langmuir, 2010-09, Vol.26 (18), p.14716-14722</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213</citedby><cites>FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20731339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averett, Laurel E</creatorcontrib><creatorcontrib>Akhremitchev, Boris B</creatorcontrib><creatorcontrib>Schoenfisch, Mark H</creatorcontrib><creatorcontrib>Gorkun, Oleg V</creatorcontrib><title>Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The interactions between the constituent monomers of fibrin, the polymerized protein network that provides the structural stability of blood clots, are frequently under stress because of the dynamic nature of blood flow. Herein, the calcium dependence of the structural unfolding linked to the forced dissociation of the “A−a” knob−hole bond between fibrin monomers is reported. The presence of calcium was shown to influence the incidence of the last event in the unfolding pattern characteristic of “A−a” rupture. This effect, attributed to the function of the γ1 calcium-binding site, was found to be reversible and specific. Our results indicate that binding of calcium at the γ1 site has no effect on the strength of the knob−hole bond prior to unfolding of the hole-containing γ module. Rather, calcium bound at the γ1 site makes the structure of the hole more resilient to such forced unfolding, leading to survival of the “A−a” knob−hole bond during larger extensions of the fibrinogen molecule but at the cost of rupture of the bond at lower forces.</description><subject>Binding Sites</subject><subject>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</subject><subject>Biomechanical Phenomena</subject><subject>Calcium - metabolism</subject><subject>Fibrin - chemistry</subject><subject>Fibrin - metabolism</subject><subject>Fibrinogen - chemistry</subject><subject>Fibrinogen - metabolism</subject><subject>Humans</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Unfolding</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkbFuFDEQhi0EIkeg4AWQG4RSLHjs9TqmOy4cRArQJPVqzp5NHO3ay3q3SJeSFmp4Ct6Dh7gnYeGS0FCNNPP9nzQzjD0F8RKEhFctggBTVeU9tgAtRaEPpbnPFsKUqjBlpfbYo5wvhRBWlfYh25PCKFDKLtjXFbYuTB0_op6ip-iIp4avw2YIkX_EmDpyFxiDy6_56QXxXz-B32Y-kA84UubjPDiLTWp9iOf_8umcIj-OfnLk-eaKr9Mw65d934a5Maa_ue319-X2yzfcXv_gb1L0j9mDBttMT27qPjtbvz1dvS9OPr07Xi1PClSHYiwqkq5B1BtnhfdeClEBCFWiNxZIokFjpQVD1jpyHrUuibwsUYPSUoLaZy923n5InyfKY92F7KhtMVKacm20hgqEkDN5sCPdkHIeqKn7IXQ4XNUg6j8PqO8eMLPPbqzTpiN_R95efAae7wB0ub5M0xDnJf8j-g11x48e</recordid><startdate>20100921</startdate><enddate>20100921</enddate><creator>Averett, Laurel E</creator><creator>Akhremitchev, Boris B</creator><creator>Schoenfisch, Mark H</creator><creator>Gorkun, Oleg V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100921</creationdate><title>Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond</title><author>Averett, Laurel E ; Akhremitchev, Boris B ; Schoenfisch, Mark H ; Gorkun, Oleg V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binding Sites</topic><topic>Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials</topic><topic>Biomechanical Phenomena</topic><topic>Calcium - metabolism</topic><topic>Fibrin - chemistry</topic><topic>Fibrin - metabolism</topic><topic>Fibrinogen - chemistry</topic><topic>Fibrinogen - metabolism</topic><topic>Humans</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Unfolding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averett, Laurel E</creatorcontrib><creatorcontrib>Akhremitchev, Boris B</creatorcontrib><creatorcontrib>Schoenfisch, Mark H</creatorcontrib><creatorcontrib>Gorkun, Oleg V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averett, Laurel E</au><au>Akhremitchev, Boris B</au><au>Schoenfisch, Mark H</au><au>Gorkun, Oleg V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-09-21</date><risdate>2010</risdate><volume>26</volume><issue>18</issue><spage>14716</spage><epage>14722</epage><pages>14716-14722</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The interactions between the constituent monomers of fibrin, the polymerized protein network that provides the structural stability of blood clots, are frequently under stress because of the dynamic nature of blood flow. Herein, the calcium dependence of the structural unfolding linked to the forced dissociation of the “A−a” knob−hole bond between fibrin monomers is reported. The presence of calcium was shown to influence the incidence of the last event in the unfolding pattern characteristic of “A−a” rupture. This effect, attributed to the function of the γ1 calcium-binding site, was found to be reversible and specific. Our results indicate that binding of calcium at the γ1 site has no effect on the strength of the knob−hole bond prior to unfolding of the hole-containing γ module. Rather, calcium bound at the γ1 site makes the structure of the hole more resilient to such forced unfolding, leading to survival of the “A−a” knob−hole bond during larger extensions of the fibrinogen molecule but at the cost of rupture of the bond at lower forces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20731339</pmid><doi>10.1021/la1017664</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2010-09, Vol.26 (18), p.14716-14722 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_755161002 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Binding Sites Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials Biomechanical Phenomena Calcium - metabolism Fibrin - chemistry Fibrin - metabolism Fibrinogen - chemistry Fibrinogen - metabolism Humans Microscopy, Atomic Force Models, Molecular Protein Multimerization Protein Structure, Quaternary Protein Unfolding |
title | Calcium Dependence of Fibrin Nanomechanics: The γ1 Calcium Mediates the Unfolding of Fibrinogen Induced by Force Applied to the “A−a” Bond |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20Dependence%20of%20Fibrin%20Nanomechanics:%20The%20%CE%B31%20Calcium%20Mediates%20the%20Unfolding%20of%20Fibrinogen%20Induced%20by%20Force%20Applied%20to%20the%20%E2%80%9CA%E2%88%92a%E2%80%9D%20Bond&rft.jtitle=Langmuir&rft.au=Averett,%20Laurel%20E&rft.date=2010-09-21&rft.volume=26&rft.issue=18&rft.spage=14716&rft.epage=14722&rft.pages=14716-14722&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la1017664&rft_dat=%3Cproquest_cross%3E755161002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a380t-6e2cfaa5bc90ddd200611034ad791e2a7a792917e99cecda554eed24a51352213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=755161002&rft_id=info:pmid/20731339&rfr_iscdi=true |