Loading…
Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory
Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great prom...
Saved in:
Published in: | Nano letters 2010-09, Vol.10 (9), p.3596-3603 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3 |
---|---|
cites | cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3 |
container_end_page | 3603 |
container_issue | 9 |
container_start_page | 3596 |
container_title | Nano letters |
container_volume | 10 |
creator | Dorfmüller, Jens Vogelgesang, Ralf Khunsin, Worawut Rockstuhl, Carsten Etrich, Christoph Kern, Klaus |
description | Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures. |
doi_str_mv | 10.1021/nl101921y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755179545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755179545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</originalsourceid><addsrcrecordid>eNpt0MtKw0AUBuBBFKvVhS8g2YgIjc41k3EjpdQLFBWs6zCZC6YkM3UmQfv2RlrbjatzFh__4fwAnCF4jSBGN65GEAmMVnvgCDEC00wIvL_dczoAxzEuIISCMHgIBhhynLGMH4G711rGxrtKJc_S-a8qmGTsWuOcjLfJ9HtpQtUY146St6rpatlW3o0S6XQy_zA-rE7AgZV1NKebOQTv99P55DGdvTw8TcazVFIE21TYksCyVIJnGSKa5YhpXYqSGmyJtZJRxJWxSmJDdEZzLoSmmClVUka0MmQILte5y-A_OxPboqmiMnUtnfFdLDhjiAvW6yG4WksVfIzB2GLZvyDDqkCw-K2r2NbV2_NNalc2Rm_lXz89uNgAGZWsbZBOVXHnCEY5otnOSRWLhe-C68v45-APl-p9-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755179545</pqid></control><display><type>article</type><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</creator><creatorcontrib>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</creatorcontrib><description>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101921y</identifier><identifier>PMID: 20726567</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanolithography ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires ; Surface and interface electron states</subject><ispartof>Nano letters, 2010-09, Vol.10 (9), p.3596-3603</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</citedby><cites>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23218146$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20726567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorfmüller, Jens</creatorcontrib><creatorcontrib>Vogelgesang, Ralf</creatorcontrib><creatorcontrib>Khunsin, Worawut</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Etrich, Christoph</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanolithography</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Surface and interface electron states</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKw0AUBuBBFKvVhS8g2YgIjc41k3EjpdQLFBWs6zCZC6YkM3UmQfv2RlrbjatzFh__4fwAnCF4jSBGN65GEAmMVnvgCDEC00wIvL_dczoAxzEuIISCMHgIBhhynLGMH4G711rGxrtKJc_S-a8qmGTsWuOcjLfJ9HtpQtUY146St6rpatlW3o0S6XQy_zA-rE7AgZV1NKebOQTv99P55DGdvTw8TcazVFIE21TYksCyVIJnGSKa5YhpXYqSGmyJtZJRxJWxSmJDdEZzLoSmmClVUka0MmQILte5y-A_OxPboqmiMnUtnfFdLDhjiAvW6yG4WksVfIzB2GLZvyDDqkCw-K2r2NbV2_NNalc2Rm_lXz89uNgAGZWsbZBOVXHnCEY5otnOSRWLhe-C68v45-APl-p9-g</recordid><startdate>20100908</startdate><enddate>20100908</enddate><creator>Dorfmüller, Jens</creator><creator>Vogelgesang, Ralf</creator><creator>Khunsin, Worawut</creator><creator>Rockstuhl, Carsten</creator><creator>Etrich, Christoph</creator><creator>Kern, Klaus</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100908</creationdate><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><author>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanolithography</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Surface and interface electron states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorfmüller, Jens</creatorcontrib><creatorcontrib>Vogelgesang, Ralf</creatorcontrib><creatorcontrib>Khunsin, Worawut</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Etrich, Christoph</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorfmüller, Jens</au><au>Vogelgesang, Ralf</au><au>Khunsin, Worawut</au><au>Rockstuhl, Carsten</au><au>Etrich, Christoph</au><au>Kern, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-09-08</date><risdate>2010</risdate><volume>10</volume><issue>9</issue><spage>3596</spage><epage>3603</epage><pages>3596-3603</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20726567</pmid><doi>10.1021/nl101921y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-09, Vol.10 (9), p.3596-3603 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_755179545 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Materials science Methods of nanofabrication Nanocrystalline materials Nanolithography Nanoscale materials and structures: fabrication and characterization Physics Quantum wires Surface and interface electron states |
title | Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Nanowire%20Antennas:%20Experiment,%20Simulation,%20and%20Theory&rft.jtitle=Nano%20letters&rft.au=Dorfmu%CC%88ller,%20Jens&rft.date=2010-09-08&rft.volume=10&rft.issue=9&rft.spage=3596&rft.epage=3603&rft.pages=3596-3603&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101921y&rft_dat=%3Cproquest_cross%3E755179545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=755179545&rft_id=info:pmid/20726567&rfr_iscdi=true |