Loading…

Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory

Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great prom...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2010-09, Vol.10 (9), p.3596-3603
Main Authors: Dorfmüller, Jens, Vogelgesang, Ralf, Khunsin, Worawut, Rockstuhl, Carsten, Etrich, Christoph, Kern, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3
cites cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3
container_end_page 3603
container_issue 9
container_start_page 3596
container_title Nano letters
container_volume 10
creator Dorfmüller, Jens
Vogelgesang, Ralf
Khunsin, Worawut
Rockstuhl, Carsten
Etrich, Christoph
Kern, Klaus
description Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.
doi_str_mv 10.1021/nl101921y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755179545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755179545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</originalsourceid><addsrcrecordid>eNpt0MtKw0AUBuBBFKvVhS8g2YgIjc41k3EjpdQLFBWs6zCZC6YkM3UmQfv2RlrbjatzFh__4fwAnCF4jSBGN65GEAmMVnvgCDEC00wIvL_dczoAxzEuIISCMHgIBhhynLGMH4G711rGxrtKJc_S-a8qmGTsWuOcjLfJ9HtpQtUY146St6rpatlW3o0S6XQy_zA-rE7AgZV1NKebOQTv99P55DGdvTw8TcazVFIE21TYksCyVIJnGSKa5YhpXYqSGmyJtZJRxJWxSmJDdEZzLoSmmClVUka0MmQILte5y-A_OxPboqmiMnUtnfFdLDhjiAvW6yG4WksVfIzB2GLZvyDDqkCw-K2r2NbV2_NNalc2Rm_lXz89uNgAGZWsbZBOVXHnCEY5otnOSRWLhe-C68v45-APl-p9-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755179545</pqid></control><display><type>article</type><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</creator><creatorcontrib>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</creatorcontrib><description>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101921y</identifier><identifier>PMID: 20726567</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanolithography ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires ; Surface and interface electron states</subject><ispartof>Nano letters, 2010-09, Vol.10 (9), p.3596-3603</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</citedby><cites>FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23218146$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20726567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorfmüller, Jens</creatorcontrib><creatorcontrib>Vogelgesang, Ralf</creatorcontrib><creatorcontrib>Khunsin, Worawut</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Etrich, Christoph</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanolithography</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Surface and interface electron states</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKw0AUBuBBFKvVhS8g2YgIjc41k3EjpdQLFBWs6zCZC6YkM3UmQfv2RlrbjatzFh__4fwAnCF4jSBGN65GEAmMVnvgCDEC00wIvL_dczoAxzEuIISCMHgIBhhynLGMH4G711rGxrtKJc_S-a8qmGTsWuOcjLfJ9HtpQtUY146St6rpatlW3o0S6XQy_zA-rE7AgZV1NKebOQTv99P55DGdvTw8TcazVFIE21TYksCyVIJnGSKa5YhpXYqSGmyJtZJRxJWxSmJDdEZzLoSmmClVUka0MmQILte5y-A_OxPboqmiMnUtnfFdLDhjiAvW6yG4WksVfIzB2GLZvyDDqkCw-K2r2NbV2_NNalc2Rm_lXz89uNgAGZWsbZBOVXHnCEY5otnOSRWLhe-C68v45-APl-p9-g</recordid><startdate>20100908</startdate><enddate>20100908</enddate><creator>Dorfmüller, Jens</creator><creator>Vogelgesang, Ralf</creator><creator>Khunsin, Worawut</creator><creator>Rockstuhl, Carsten</creator><creator>Etrich, Christoph</creator><creator>Kern, Klaus</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100908</creationdate><title>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</title><author>Dorfmüller, Jens ; Vogelgesang, Ralf ; Khunsin, Worawut ; Rockstuhl, Carsten ; Etrich, Christoph ; Kern, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanolithography</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Surface and interface electron states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorfmüller, Jens</creatorcontrib><creatorcontrib>Vogelgesang, Ralf</creatorcontrib><creatorcontrib>Khunsin, Worawut</creatorcontrib><creatorcontrib>Rockstuhl, Carsten</creatorcontrib><creatorcontrib>Etrich, Christoph</creatorcontrib><creatorcontrib>Kern, Klaus</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorfmüller, Jens</au><au>Vogelgesang, Ralf</au><au>Khunsin, Worawut</au><au>Rockstuhl, Carsten</au><au>Etrich, Christoph</au><au>Kern, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-09-08</date><risdate>2010</risdate><volume>10</volume><issue>9</issue><spage>3596</spage><epage>3603</epage><pages>3596-3603</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20726567</pmid><doi>10.1021/nl101921y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-09, Vol.10 (9), p.3596-3603
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_755179545
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanolithography
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
Surface and interface electron states
title Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Nanowire%20Antennas:%20Experiment,%20Simulation,%20and%20Theory&rft.jtitle=Nano%20letters&rft.au=Dorfmu%CC%88ller,%20Jens&rft.date=2010-09-08&rft.volume=10&rft.issue=9&rft.spage=3596&rft.epage=3603&rft.pages=3596-3603&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101921y&rft_dat=%3Cproquest_cross%3E755179545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a410t-9fb30bbc976613d5815ddb9b4e2f3ffa5417cefca2e3d648799d425ccb453dce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=755179545&rft_id=info:pmid/20726567&rfr_iscdi=true