Loading…

Adenovirus DNA polymerase is a phosphoprotein

Biological activities of many of the eukaryotic DNA replication proteins are modulated by protein phosphorylation. Investigations of the phosphorylation of adenovirus DNA polymerase (AdPol) have been difficult mainly because of its low level of synthesis in adenovirus-infected HeLa cells. However, w...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1993-01, Vol.268 (1), p.442-448
Main Authors: MURALIDHARA RAMACHANDRA, NAKANO, R, MOHAN, P. M, RAWITCH, A. B, RADHA PADMANABHAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biological activities of many of the eukaryotic DNA replication proteins are modulated by protein phosphorylation. Investigations of the phosphorylation of adenovirus DNA polymerase (AdPol) have been difficult mainly because of its low level of synthesis in adenovirus-infected HeLa cells. However, when AdPol was overproduced using the recombinant vaccinia virus (RV-AdPol) and the baculovirus expression systems, or by a large scale metabolic labeling of adenovirus 2-infected HeLa cells (native AdPol), in vivo phosphorylation of AdPol could be demonstrated. Phosphoamino acid analysis of [32P]AdPol indicated the presence of phosphoserine independent of the source of AdPol. Comparison of tryptic peptide maps of native AdPol and RV-AdPol revealed that the majority of phosphopeptides were common. Fractionation by high performance liquid chromatography and sequencing of one of the major phosphopeptides revealed serine 67 as a site of phosphorylation. Interestingly, this site is located close to the nuclear localization signal of AdPol and has a consensus substrate recognition sequence for histone H1 (cdc2-related) kinases and mitogen-activated protein kinases. Dephosphorylation of AdPol with calf intestinal alkaline phosphatase resulted in significant decrease in its activity in the in vitro DNA replication initiation assay, suggesting that phosphorylation is important for its biological activity.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)54171-5