Loading…

Expression of tal-1 and GATA-binding proteins during human hematopoiesis

Tal-1 rearrangements are associated with nearly 30% of human T acute lymphoblastic leukemia. Tal-1 gene encodes a putative transcription factor with a basic helix-loop-helix domain and is known to be predominantly expressed in hematopoietic cells. We investigated the pattern of tal-1 expression in p...

Full description

Saved in:
Bibliographic Details
Published in:Blood 1993-02, Vol.81 (3), p.647-655
Main Authors: MOUTHON, M.-A, BERNARD, O, MITJAVILA, M.-T, ROMEO, P.-H, VAINCHENKER, W, MATHIEU-MAHUL, D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tal-1 rearrangements are associated with nearly 30% of human T acute lymphoblastic leukemia. Tal-1 gene encodes a putative transcription factor with a basic helix-loop-helix domain and is known to be predominantly expressed in hematopoietic cells. We investigated the pattern of tal-1 expression in purified human hematopoietic cells by in situ hybridization and reverse transcriptase polymerase chain reaction analysis. Both methods demonstrated that the tal-1 gene is expressed in megakaryocytes and erythroblasts as well as in basophilic granulocytes. In addition, our results indicate that the tal-1 1A promoter, which contains two consensus GATA-binding sites, is active mainly in these lineages. Because the GATA-1 gene is known to transactivate several genes specific for the erythroid, megakaryocytic, and mastocytic/basophilic lineages, we studied GATA-1 expression in these purified hematopoietic cells. We found that GATA-1 and tal-1 genes are coexpressed in these three lineages. Remarkably, the expression of both genes is downmodulated during erythroid and megakaryocytic terminal maturation. In immature hematopoietic cells, tal-1 and GATA-1 genes are coexpressed in committed progenitors cells (CD34+/CD38(2+)), whereas they are not detectable in the most primitive cells (CD34(2+)/CD38-). In contrast, GATA-2 is strongly expressed in both most primitive and committed progenitors cells, whereas GATA-3 is mostly detected in most primitive ones. Altogether our results strongly suggest that GATA-1 modulates the transcription of tal-1 during the differentiation of the erythroid, megakaryocytic, and basosophilic lineages.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.v81.3.647.647